Math, asked by Revathi5052277, 5 months ago

Show that the point A[4.2) B(7,5) and C(9,7) are three points lie on a same line​

Answers

Answered by ShírIey
13

Correct Question:

  • Show that the points A(4, 2), B(7, 5) and C(9, 7) are three point lie on a same line.

⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀

❍ Let the given points be A(4, 2), B(7, 5) and C(9, 7).

◗ To find out distance b/w two given points the formula is given by,

⠀⠀

\bf{\dag}\:\boxed{\sf {D_{\:(distance)}= \sqrt{\Big(x_2 - x_1 \Big)^2 + \Big(y_2 - y_1 \Big)^2}}}

⠀⠀

\underline{\bf{\dag} \:\mathfrak{Substituting \: Values \: in \: the \: formula \: :}}

⠀⠀

TAKING AB :

⠀⠀

:\implies\sf AB = \sqrt{\Big(7 - 4 \Big)^2 + \Big(5 - 2 \Big)^2} \\\\\\:\implies\sf AB = \sqrt{3^2 + 3^2} \\\\\\:\implies\sf AB =  \sqrt{9 + 9} \\\\\\:\implies\sf  AB = \sqrt{18} \\\\\\:\implies{\underline{\boxed{\frak{\pink{AB = 3\sqrt{2} \: units}}}}}\:\bigstar

⠀⠀

TAKING BC :

⠀⠀

:\implies\sf BC = \sqrt{\Big(9 - 7 \Big)^2 + \Big(7 - 5 \Big)^2} \\\\\\:\implies\sf BC  = \sqrt{2^2 + 2^2} \\\\\\:\implies\sf BC =  \sqrt{4 + 4} \\\\\\:\implies\sf  BC = \sqrt{8} \\\\\\:\implies{\underline{\boxed{\frak{\pink{BC = 2\sqrt{2} \: units}}}}}\:\bigstar

⠀⠀

TAKING AC:

⠀⠀

:\implies\sf AC = \sqrt{\Big(9 - 4 \Big)^2 + \Big(7 - 2 \Big)^2} \\\\\\:\implies\sf AC = \sqrt{5^2 + 5^2} \\\\\\:\implies\sf AC =  \sqrt{25 + 25} \\\\\\:\implies\sf  AC = \sqrt{50} \\\\\\:\implies{\underline{\boxed{\frak{\pink{AC = 5\sqrt{2} \: units}}}}}\:\bigstar

⠀⠀

◗ Here, we can see that,

:\implies\sf 3\sqrt{2} + 2\sqrt{2} = 5\sqrt{2} \\\\\\:\implies{\underline{\boxed{\sf{\purple{AB + BC + AC}}}}}\:\bigstar

⠀⠀

  • NOTE: Collinear points lie on the straight line.

⠀⠀

\therefore\:{\underline{\sf{Hence, \ given \ points \ are \ \bf{Collinear}.}}}⠀⠀


Anonymous: Nice
Answered by Anonymous
7

Answer:

Question :-

Show that the points A(4, 2), B(7, 5) and C(9, 7) are three point lie on a same line.

Required Answer :-

Use Distance formula for AB,BC,AC

 \sf \: D_{distance} =  \big \sqrt{(y_2 - y_1)^2 + (x_2 - x_1)^2}

AB

 \sf \: D \:=  \sqrt{(7 - 4) {}^{2}+{5 - 2} {}^{2}  }

 \sf \: D =  \sqrt{ {3}^{2} +  {3}^{2}  }

 \sf \: D =  \sqrt{9 + 9}

 \sf \: D =  \sqrt{18}

 \sf \: D = 3 \sqrt{2} \: units

AC

 \sf \: D \:=  \sqrt{(9 - 7) {}^{2}+{7-5} {}^{2}  }

 \sf \: D =  \sqrt{ {2}^{2} +  {2}^{2}  }

 \sf \: D =  \sqrt{4 + 4}

 \sf \: D =  \sqrt{8}

 \sf \: D = 2 \sqrt{2} \: units

AC

 \sf \: D \:=  \sqrt{(9 - 4) {}^{2}+{7 - 2} {}^{2}  }

 \sf \: D =  \sqrt{ {5}^{2} +  {5}^{2}  }

 \sf \: D =  \sqrt{25 + 25}

 \sf \: D =  \sqrt{50}

 \sf \: D = 5 \sqrt{2} \: units

Now,

AB + BC = AC

22 + 32 = 52


Mister360: [tex]\sf Given \begin{cases}...your text ...\end {cases}[/tex]
Anonymous: Niceeeeee :)
Anonymous: Thanks
Similar questions