Math, asked by agaur1026, 8 months ago

Show that the point A (-4,-3) B(3,1)C(3,6)D(-4,2) taken in the order form the vertices of a parallelogram are not

Answers

Answered by anu261815
11

Answer:

Heyy friend here are your solutions..

Step-by-step explanation:

You can find using distance formula as follows:-

Hope it helps u..

I guess the question is incomplete..

Attachments:
Answered by rohitkumargupta
3

Answer:

Step-by-step explanation:

Given that ,

the points A( -4 , -3 ) , B( 3, 1 ) , C( 3 , 6 ) and D( -4 , 2 ).

AB = \sqrt{(3 + 4)^{2} + (1 + 3)^{2} }

     = \sqrt{7^{2}+4^{2}  }

     = \sqrt{49 + 16}

     = \sqrt{65}

BC = \sqrt{(3-3)^{2} + (6-1)^{2}  }

     = \sqrt{0 + 25}

     = 5

CD = \sqrt{(3 + 4)^{2} + (6-2)^{2}  }

     = \sqrt{7^{2} + 4^{2}  }

     = \sqrt{49 + 16 }

     = \sqrt{65}

DA = \sqrt{(-4+4)^{2}+(-3-2)^{2}  }

     = \sqrt{0 + 25 }

     = 5

AC = \sqrt{(3+4)^{2} + (6 + 3 ) ^{2}  }

     = \sqrt{49 + 81}

     = \sqrt{130}

BD = \sqrt{(3 + 4 ) ^{2} + (1 - 2)^{2}  }

     = \sqrt{49 + 1}

     = \sqrt{50}

AB = CD = √65

BC = DA = 5

opposite sides are equal .

And diagonals are unequal.

Therefore, it is a parallelogram .

THANKS.

#SPJ2.

https://brainly.in/question/9438873

Attachments:
Similar questions