Show that the points 0(0,0,0), A(2,-3, 3), B(-2,3,-3) are collinear. Find the ratio in which each point divides the segment joining the other two
Answers
Answer:
Given:
0(0,0,0), A(2, -3, 3), B(-2, 3, -3) are collinear
Let's find area of △OAB which is given by
\Delta=\frac{1}{2}|\mathrm{OA}||\mathrm{OB}| \sin \thetaΔ=
2
1
∣OA∣∣OB∣sinθ
\text { where } \theta \text { is angle between } \overrightarrow{\mathrm{OA}} \text { and } \overrightarrow{\mathrm{OB}} where θ is angle between
OA
and
OB
\text { Now, } \cos \theta=\frac{\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OA}}}{|\overrightarrow{\mathrm{OA}}||\overrightarrow{\mathrm{OB}}|} Now, cosθ=
∣
OA
∣∣
OB
∣
OA
⋅
OA
=\frac{-4-9-9}{\sqrt{4+9+9} \sqrt{4+9+9}}=\frac{-22}{22}=
4+9+9
4+9+9
−4−9−9
=
22
−22
\begin{gathered}\begin{array}{l}\cos \theta=-1 \Rightarrow \theta=180^{\circ} \\\Delta=0 \text { as } \sin 180=0\end{array}\end{gathered}
cosθ=−1⇒θ=180
∘
Δ=0 as sin180=0
O,A,B are collinear
\text { Now, let A divides } \overrightarrow{\mathrm{OB}} \text { in } \mathrm{k}: 1 Now, let A divides
OB
in k:1
2=\frac{-2 \mathrm{k}+0}{\mathrm{k}+1}2=
k+1
−2k+0
2 \mathrm{k}+2=-2 \mathrm{k}2k+2=−2k
4 \mathrm{k}=-2 \Rightarrow \mathrm{k}=-\frac{1}{2}4k=−2⇒k=−
2
1
\text { A divides } \overrightarrow{O B} \text { in } 1: 2 \text { externally } A divides
OB
in 1:2 externally
Now for B
-2=\frac{2 k+0}{k+1}−2=
k+1
2k+0
-2 \mathrm{k}-2=2 \mathrm{k}−2k−2=2k
4 \mathrm{k}=-24k=−2
\mathrm{k}=-\frac{1}{2}k=−
2
1
\text { B divides } \overrightarrow{O A} \text { in } 1: 2 \text { externally for O } B divides
OA
in 1:2 externally for O
\mathrm{O}=\frac{-2 \mathrm{k}+2}{\mathrm{k}+1}O=
k+1
−2k+2
2 \mathrm{k}=2 \Rightarrow \mathrm{k}=12k=2⇒k=1
\mathrm{O} \text { divides } \overrightarrow{\mathrm{AB}} \text { in } 1: 1 \text { internally }O divides
AB
in 1:1 internally
Hence the answer is \mathrm{O} \text { divides } \overrightarrow{\mathrm{AB}} \text { in } 1: 1 \text { internally }O divides
AB
in 1:1 internally
✔✏✏✏✏✏
Let's find area of △OAB which is given by,
Δ=
2
1
∣OA∣∣OB∣sinθ
where θ is angle between
OA
and
OB
Now, cosθ=
∣
∣
∣
∣
OA
∣
∣
∣
∣
∣
∣
∣
∣
OB
∣
∣
∣
∣
OA
.
OA
=
4+9+9
4+9+9
−4−9−9
=
22
−22
⇒ cosθ=−1⇒ θ=180
o
⇒ Δ=0 as sin180=0
⇒ O,A,B are collinear
Now, let A divides
OB
in k:1
⇒ 2=
k+1
−2k+0
⇒ 2k+2=−2k⇒ 4k=−2⇒ k=−
2
1
⇒ A divides
OB
in 1:2 externally
Now for B
⇒ −2=
k+1
2k+0
⇒ −2k−2=2k⇒ 4k=−2
⇒ k=−
2
1
⇒ B divides
OA
in 1:2 externally for O
⇒ O=
k+1
−2k+2
⇒ 2k=2⇒ k=1
⇒ O divides
AB
in 1:1 internally