Math, asked by yashrathod701, 11 months ago

Show that the points (0,-1) ,(2,1) , (0,3) and (-2,1) are vertices of square.​

Answers

Answered by BrainlyConqueror0901
20

\blue{\bold{\underline{\underline{Answer:}}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies Co-ordinate \: of \: a = (0, - 1) \\  \\ \tt:  \implies Co-ordinate \: of \: b= (2, 1) \\  \\ \tt:  \implies Co-ordinate \: of \: c = (0,3) \\  \\ \tt:  \implies Co-ordinate \: of \: d = ( - 2, 1) \\  \\ \red{\underline \bold{To \: Show:}}  \\  \tt:  \implies Vertices \: are \: coordinate \: of \: square

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies AB = BC = CD= DA \:  \:  \:  \: (Property \: of \: square) \\  \\  \bold{For \: AB  \: Distance: } \\  \tt:  \implies  AB = \sqrt{ (x_{2} -  x_{1})^{2}  + ( y_{2} - y_{1})^{2}  }  \\  \\  \tt:  \implies  AB= \sqrt{(2 - 0)^{2} + ( - 1 - 1)^{2} }  \\  \\ \tt:  \implies AB =  \sqrt{4 + 4 }  \\  \\  \green{\tt:  \implies AB = 2 \sqrt{2}   \: units} \\  \\  \bold{Similarly \: for \: bc \: distance : } \\  \tt:  \implies  BC = \sqrt{(2 - 0)^{2} +  {(1 - 3)}^{2}  }

\tt:\implies BC =  \sqrt{4 + 4}  \\  \\ \tt:  \implies BC =  2\sqrt{2}  \: units \\  \\  \bold{For \: CD \:Distance : } \\ \tt:  \implies  CD = \sqrt{(0 - ( - 2))^{2}  +  ( 3 - 1)^{2} }  \\  \\ \tt:  \implies CD =  \sqrt{4 + 4}  \\  \\  \green{\tt:  \implies CD = 2 \sqrt{2}  \: units} \\  \\  \bold{For \:DA \: Distance : } \\ \tt:  \implies DA =  \sqrt{ (- 2 - 0)^{2}  + (1 - ( - 1))^{2} }  \\  \\ \tt:  \implies DA =  \sqrt{4 + 4}  \\  \\  \green{\tt:  \implies DA = 2 \sqrt{2}  \: units} \\  \\   \green{\tt \therefore AB = BC = CD =DA}

Similar questions