show that the points ( 1,2 ), ( 2,1 ), ( -2,5 ) lie on the same line i.e,
collinear
Answers
Answered by
35
A=(1,2) B=(2,1) C=(-2,5)
AB = √[(2-1)^2 + (1-2)^2] =√(1+1) =√2
BC= √[(-2-2)^2+(5-1)^2]=√(16+16) =√32 =4√2
AC = √[(-2-1)^2+(5-2)^2]=√(9+9) =√18=3√2
BC= AB+AC
therefore the points are collinear
AB = √[(2-1)^2 + (1-2)^2] =√(1+1) =√2
BC= √[(-2-2)^2+(5-1)^2]=√(16+16) =√32 =4√2
AC = √[(-2-1)^2+(5-2)^2]=√(9+9) =√18=3√2
BC= AB+AC
therefore the points are collinear
Answered by
7
Answer:
+3
Step-by-step explanation:
given a to be distance=√10
√x1^2+y1^2=√10
√1^2+x^2=√10
1+x^2=10
x^2=10-1
x^2=9
x=√9
x=3
Similar questions