Math, asked by vivivo, 1 year ago

show that the points (1,5);(2,3);(-2,-11) are collinear.

Answers

Answered by FuturePoet
9

Hi!

_______________________________________

Distance Formula :

\sqrt{(x_2 - x_1)^2 +( y_2 - y_1 )^2 }

Let three points be

a ( 1 , 5 ) ; b (2, 3) ; c ( -2 , -11)

Find AB

\sqrt{(2-1)^2 + (3 -5)^2 }

\sqrt{(1)^2 + (-2)^2}

\sqrt{1 + 4 }

AB = \sqrt{5}

Find AC

\sqrt{(-2 - 1)^2 +( -11 - 5 )^2}

= \sqrt{(-3)^2 + (-16)^2 }

= \sqrt{9 + 256 }

AC = \sqrt{265}

Find BC

\sqrt{(-2 - 2)^2 + (-11 -3 )^2 }

=\sqrt{(-4)^2 + (-14)^2 }

= \sqrt{16 + 196 }

BC = \sqrt{212}

Here , AB + BC ≠ AC , BC + AC ≠ AB and AB + AC ≠ BC

From the above Points a , b and c  are not Collinear

_________________________________________

Thanks !!







drishtyg123: you can do this using method of slope also
Answered by Anonymous
7

\bf\huge\boxed{\boxed{\bf\huge\:Hello\:Mate}}}



\bf\huge Let A(1 , 5) , \: B(2 , 3) , \: C(-2 , -11)



\bf\huge AB= \sqrt{(2 - 1)^2 + (3 - 5)^2}



\bf\huge = \sqrt{1^2 + (-2)^2}



\bf\huge = \sqrt{1 + 4} = \sqrt{5}



\bf\huge BC = \sqrt{(-2 - 2)^2 + (-11 - 3)^2}



\bf\huge BC = \sqrt{(-4)^2 + (-14)^2}



\bf\huge BC = \sqrt{16 + 196}



\bf\huge BC = \sqrt{212}



\bf\huge AB = \sqrt{4\times 53} = 2\sqrt{53}



\bf\huge AC = \sqrt{(-2 - 1)^2 + ( - 11 - 5)^2}



\bf\huge AC = \sqrt{(-3)^2 + (- 16)^2}



\bf\huge AC = \sqrt{9 + 256} = \sqrt{265}



\bf\huge Hence \:A , B\: and \:C\: are\: not\: collinear



\bf\huge\boxed{\boxed{\:Regards=\:Yash\:Raj}}}


Similar questions