Show that the points (1,-6)(5,2)(7,0)(-1,-4)are concyclic and find equation of circle
Answers
Answer:
Step-by-step explanation:
Answer:
The points (1,-6)(5,2)(7,0)(-1,-4) are concyclic and the equation of the circle is
Step-by-step explanation:
Given: The given points are the points (1,-6)(5,2)(7,0)(-1,-4)
To find: The points are concyclic and to find the equation of the circle
Solution:
The points are (1,-6), (5,2), (7,0), (-1,-4) are concyclic
Let equation of circle passing through the these points
(1)
If all points lie on circle then satisfy equation (1)
(1, -6)
⇒
⇒
⇒ 1 +36 +2g -12f + c =0
⇒ 2g - 12f +c + 37 = 0 (2)
(5,2)
⇒
⇒
⇒ 25+4 +10g +4f + c =0
⇒10g + 4f + c +29 =0 (3)
(7,0)
⇒
⇒
⇒ 49+0+14g +0+ c =0
⇒14g + c +49 =0
c = -49 - 14g (4)
(-1,-4)
⇒
⇒
⇒ 1+16 - 2g - 8f + c =0
⇒-2g -8f +c + 17 =0
Sub eq 4 in eq 2
2g - 12f +c + 37 = 0
c = -49 - 14g
2g - 12f -49 - 14g+ 37 = 0
⇒-12g -12f -12 = 0
⇒ - g - f - 1 = 0
g + f+ 1 = 0 (5)
Sub eq 4 in eq 3
10g + 4f + c +29 =0
⇒ 10g + 4f -49 - 14g +29 = 0
⇒ -4g + 4f -20 = 0
⇒ -g +f - 5 = 0
g -f +5 =0 (6)
Add eq 5 and eq 6
g + f+ 1 = 0
g -f +5 =0
----------------
2g + 6 =0
2g = -6
g = -3
Sub g = 3 in eq 5
g + f+ 1 = 0
-3 + f +1 = 0
-2 +f = 0
f = 2
Sub the value of f and g in eq 4
c = -49 - 14g
c = -49 - 14 (-3)
c = -49 + 42
c = -7
Sub the value of g , f and c in eq 1
Sub the points in above equation
(-1 , -4)
1 + 16 + 6 -16 -7 = 0
7 + 16 - 16 - 7 = 0
0 = 0
As the result the points (1,-6)(5,2)(7,0)(-1,-4)are concyclic
Final answer:
The points (1,-6)(5,2)(7,0)(-1,-4)are concyclic and the equation of the circle is
#SPJ2