Math, asked by srinivaskondala1975, 2 months ago

Show that the points (-2,-1), (1,0), (4,3) and (1,2) taken in order are
the vertices of a parallelogram.​

Answers

Answered by mathdude500
49

Given :-

Let us assume the vertices as A, B, C, D such that

  • A (-2,-1)

  • B (1,0)

  • C (4,3)

and

  • D (1,2)

To Prove :-

  • ABCD is a parallelogram.

Concept Used :-

We know,

In parallelogram, diagonals bisect each other.

So in order to prove that given vertices of A, B, C, D taken in order forms a parallelogram, it is sufficient to show that midpoint of AC is equals to midpoint of BD.

\large\underline{\sf{Solution-}}

Given coordinates are

  • A (-2,-1)

  • B (1,0)

  • C (4,3)

and

  • D (1,2)

We know,

Midpoint Formula :-

Let us consider a line segment joining the points A and B and let C (x, y) be the midpoint of AB, then coordinates of C is

 \boxed{ \quad\sf \:( x, y) =  \bigg(\dfrac{x_1+x_2}{2}  , \dfrac{y_1+y_2}{2} \bigg) \quad}

 \sf \: where \: coordinates \: of \: A  \: and \: B \: are \: (x_1,y_1) \: and \:  B(x_2,y_2)

Let us first find midpoint of AC.

  • Coordinates of A = ( - 2, - 1)

  • Coordinates of C = (4, 3)

Using midpoint Formula,

\rm :\longmapsto\: \sf \: Midpoint \:  of  \: AC \:  =  \: \bigg(\dfrac{x_1+x_2}{2}  , \dfrac{y_1+y_2}{2} \bigg)

Here,

  • • x₁ = - 2

  • • x₂ = 4

  • • y₁ = - 1

  • • y₂ = 3

So,

\rm :\longmapsto\:Midpoint \:  of \:  AC = \bigg(\dfrac{ - 2 + 4}{2} ,\dfrac{ - 1 + 3}{2}  \bigg)

\rm :\longmapsto\:Midpoint \:  of \:  AC = \bigg(\dfrac{ 2}{2} ,\dfrac{2}{2}  \bigg)

\rm :\longmapsto\:Midpoint \:  of \:  AC =(1 \: , \: 1)

Now, To find Midpoint of BD,

  • Coordinates of B = (1, 0)

  • Coordinates of D = (1, 2)

Using Midpoint Formula,

\rm :\longmapsto\:Midpoint  \: of  \: BD = \bigg(\dfrac{x_1+x_2}{2}  , \dfrac{y_1+y_2}{2} \bigg)

Here,

  • • x₁ = 1

  • • x₂ = 1

  • • y₁ = 0

  • • y₂ = 2

Thus,

\rm :\longmapsto\:Midpoint  \: of  \: BD = \bigg(\dfrac{1 + 1}{2} ,\dfrac{2 + 0}{2}  \bigg)

\rm :\longmapsto\:Midpoint  \: of  \: BD = \bigg(\dfrac{2}{2} ,\dfrac{2}{2}  \bigg)

\rm :\longmapsto\:Midpoint  \: of  \: BD = (1, \: 1)

\bf\implies \:Midpoint \:  of  \: AC = Midpoint  \: of  \: BD

\bf\implies \:A,B,C,D \: are \: the \: vertices \: of \: a \: parallelogram.

Additional Information :-

Distance Formula :-

Distance formula is used to find the distance between two given Points

{\underline{\boxed{\rm{\quad Distance = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \quad}}}}

Section Formula :-

Section Formula is used to find the co ordinates of the point A(x, y) which divides the line segment joining the points (B) and (C) internally in the ratio m : n,

{\underline{\boxed{\rm{\quad \Big(x, y \Big) = \Bigg(\dfrac{mx_2 + nx_1}{m + n} ,\dfrac{my_2 + ny_1}{m + n}\Bigg) \quad}}}}

Similar questions