Math, asked by wajeedabegum090, 3 months ago

show that the points (-2, -1), (1, 0), (4, 3), and (1, 2) taken in order are the vertices of a Parallelogram​

Answers

Answered by suhail2070
1

Answer:

therefore \:  \:  \: abcd \:  \:  \:  \: is \:  \: a \:  \:  \: parallelogram.

Step-by-step explanation:

a( - 2 \:  \:  \:  \:  \:  - 1) \\ b(1 \:  \:  \:  \:  \: 0) \\  \\ c(4 \:  \:  \:  \:  \:  \: 3) \\  \\ d(1 \:  \:  \:  \:  \:  \:  \:  \: 2) \\  \\  \\ mid  \:  \:  \: \:p oint \:  \:  \:  \:  \: of \:  \:  \:  \:  \: ac = ( \frac{ -2  + 4}{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \frac{ - 1 + 3}{2} ) \\  \\  = (1 \:  \:  \:  \:  \:  \:  \:  \: 1) \\  \\  \\  \\ mid \:  \:  \:  \:  \: point \:  \:  \:  \: of \:  \:  \:  \: bd = ( \frac{1 + 1}{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \frac{0 + 2}{2} ) \\  \\  \\  \\  \\  \\  = (1 \:  \:  \:  \:  \:  \:  \:  \:  \: 1) \\  \\  \\  \\ mid \:  \:  \:  \:  \:  \: point \:  \:  \:  \:  \:o f \:  \:  \:  \: ac = mid \:  \:  \: point \:  \:  \:  \:  \:  \:  \: of \:  \:  \:  \:  \: bd. \\  \\  \\ therefore \:  \:  \: abcd \:  \:  \:  \: is \:  \: a \:  \:  \: parallelogram.

Similar questions