Math, asked by krishikamehta, 19 days ago

Show that the points (2,2) , (-2,-2) and (2\sqrt{3} , -2\sqrt{3}) are the vertices of an equilateral triangle.

Answers

Answered by suhail2070
1

Answer:

ABC IS AN EQUILATERAL TRIANGLE.

Step-by-step explanation:

a(2 \:  \:  \: 2) \:  \:  \: b( - 2 \:  \:  \:  \:  \:  - 2) \:  \:  \:  \: c(2 \sqrt{3}  \:  \:  \:  \:  \:  \:  - 2 \sqrt{3} ) \\  \\ therefore \:  \:  \: ab =  \sqrt{ {(2 + 2)}^{2}  +  {(2 + 2)}^{2} }  = 4 \sqrt{2}  \:  \: units \\  \\ bc =   \sqrt{ {(2 \sqrt{3} + 2) }^{2}  +  {(2 \sqrt{3 }  - 2)}^{2} }  = 2 \sqrt{3 + 1 + 2 \sqrt{3} + 3 + 1 - 2 \sqrt{3}  }  \\  \\  = 2 \sqrt{8}  = 4 \sqrt{2}  \:  \: units \\  \\ ca =  \sqrt{ {(2 - 2 \sqrt{3} )}^{2}  +  {(2 + 2 \sqrt{3} )}^{2} }  \\  \\  = 2 \sqrt{1 + 3 + 2 \sqrt{3}  + 1 + 3 + 2 \sqrt{3} }  \\  \\  = 2 \sqrt{8}  \\  \\  = 4 \sqrt{2 }  \:  \: units \\  \\ therefore \:  \: ab \:  =  \: bc \:  =  \: ca \:  =  \: 4 \sqrt{2}  \:  \: units \: . \\  \\ therefore \:  \: abc \: is \: an \: equileteral \: triangle.

Similar questions