Math, asked by Nabhay1, 1 year ago

show that the points (3,2), (0,5), (-3,2) and (0,-1) are the vertices of a square .

Answers

Answered by vishh1
16
apply the distance formula...and make all the 4sides equal....

kaibalya1: not only distance but also slope between two Line you get answers
Answered by SerenaBochenek
4

Given:

A(3, 2) = (x₁, y₁)

B(0,5) = (x₂, y₂)

C(-3, 2) = (x₃, y₃)

D(0, -1) = (x₄, y₄)

To Prove:

Given points (ABCD) are the vertices of square.

Solution:

By applying the distance formula,

Distance of AB = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}

On substituting the values, we get

                          = \sqrt{(0-3)^2+(5-2)^2}

                          = \sqrt{9+9}

                          = \sqrt{18}

Distance of BC = \sqrt{(x_3-x_2)^2+(y_3-y_2)^2}

On substituting the value, we get

                          = \sqrt{(-3-0)^2+(2-5)^2}

                          = \sqrt{9+9}

                          = \sqrt{18}

Distance of CD = \sqrt{(x_4-x_3)^2+(y_4-y_3)^2}

On substituting the values, we get

                          = \sqrt{(0-(-3))^2\\+(-1-2)^2}

                          = \sqrt{9+9}

                          = \sqrt{18}

Distance of DA = \sqrt{(x_4-x_1)^2+(y_4-y_1)^2}

On substituting the values, we get

                          = \sqrt{(0-3)^2+(-1-2)^2}

                          = \sqrt{9+9}

                          = \sqrt{18}

All the four sides are equal. Thus, the given points are the vertices of a square.

Similar questions