English, asked by avyaaz123, 8 months ago

show that the points (3,-2) (-2,8) (0,4)
are collinear by using Heron's formula.​

Answers

Answered by purvajaiswal520
3

Answer:

hope this helps u.......

Attachments:
Answered by friendmahi89
1

A (3, -2)

B (-2, 8)

C (0, 4)

The points would be collinear only when the area of triangle formed by these points is equal to zero.

AB = \sqrt{(-2-3)^{2} +  (8+2)^{2} }

     = \sqrt{25+ 100}

     = \sqrt{125}

     = 5\sqrt{5}

BC = \sqrt{(0+2)^{2} +  (4-8)^{2} }

     = \sqrt{4+16}

     = \sqrt{20}

     = 2\sqrt{5}

CA = \sqrt{(0-3)^{2} +  (4+2)^{2} }

     = \sqrt{9+36}

     = \sqrt{45}

     = 3\sqrt{5}

So, now,  S = \frac{5\sqrt{5} + 2\sqrt{5} + 3\sqrt{5} }{2}

                   = \frac{10\sqrt{5} }{2}

                   = 5\sqrt{5}

Now, using heron's formula,

A = \sqrt{S (S-a) (S-b) (S-c)}

   = \sqrt{5\sqrt{5}(5\sqrt{5} - 5\sqrt{5}) (5\sqrt{5}-2\sqrt{5}) (5\sqrt{5}-3\sqrt{5}) }

   = \sqrt{5\sqrt{5} (0) (3\sqrt{5}) (2\sqrt{5})}

   = 0

Since, area of triangle is equal to zero, the points are collinear.

Similar questions