show that the points (3,3) , ( -2,-2) and (8, -2) are the vertices of an isosceles right-angled triangle
Answers
Answer:
The given points are vertices of isosceles right triangle.
Step-by-step-explanation:
Let the triangle be ABC.
- A ( 3, 3 ) ≡ ( x₁, y₁ )
- B ( - 2, - 2 ) ≡ ( x₂, y₂ )
- C ( 8, - 2 ) ≡ ( x₃, y₃ )
Now, by distance formula,
d ( A, B ) = √[ ( x₁ - x₂ )² + ( y₁ - y₂ )² ]
⇒ d ( A, B ) = √{ [ 3 - ( - 2 ) ]² + [ 3 - ( - 2 ) ]² }
⇒ d ( A, B ) = √[ ( 3 + 2 )² + ( 3 + 2 )² ]
⇒ d ( A, B ) = √( 5² + 5² )
⇒ d ( A, B ) = √( 25 + 25 )
⇒ d ( A, B ) = √50
∴ Length of AB = √50 units - - - ( 1 )
Now,
d ( B, C ) = √[ ( x₂ - x₃ )² + ( y₂ - y₃ )² ]
⇒ d ( B, C ) = √{ ( - 2 - 8 )² + [ - 2 - ( - 2 ) ]² }
⇒ d ( B, C ) = √[ ( - 10 )² + ( - 2 + 2 )² ]
⇒ d ( B, C ) = √( 100 + 0² )
⇒ d ( B, C ) = √100
⇒ d ( B, C ) = 10
∴ Length of BC = 10 units
∴ BC² = ( 10 )²
⇒ BC² = 100 units - - - ( 2 )
Now,
d ( A, C ) = √[ ( x₁ - x₃ )² + ( y₁ - y₃ )² ]
⇒ d ( A, C ) = √{ ( 3 - 8 )² + [ 3 - ( - 2 ) ]² }
⇒ d ( A, C ) = √[ ( - 5 )² + ( 3 + 2 )² ]
⇒ d ( A, C ) = √( 25 + 5² )
⇒ d ( A, C ) = √( 25 + 25 )
⇒ d ( A, C ) = √50
∴ Length of AC = √50 units - - - ( 3 )
From ( 1 ) & ( 3 )
Length of AB = Length of AC
∴ △ABC is an isosceles triangle.
Now,
AB² + AC² = ( √50 )² + ( √50 )²
⇒ AB² + AC² = 50 + 50
⇒ AB² + AC² = 100 units - - - ( 4 )
From ( 2 ) & ( 4 ),
AB² + AC² = BC²
By converse of Pythagoras theorem,
m∠A = 90°
∴ △ABC is an isosceles right triangle.
∴ The given points are vertices of isosceles right triangle.