Math, asked by Answerme5, 5 months ago

Show that the points (-3,5),(3,1),(1,-3)and (-5,1) form a quadrilateral or not?

Answers

Answered by mantu9000
2

Let A(- 3, 5), B(3, 1), C (1, - 3) and D(- 5, 1)  be the four points of quadrilateral.

We have to show that the given points are quadrilateral or not.

Solution:

We know that:

Area of triangle = \dfrac{1}{2} [{x_{1} (y_{2}-y_{3})+x_{2} (y_{3}-y_{1})+x_{3} (y_{1}-y_{2})}]

∴ Area of triangle ABC = \dfrac{1}{2} [(-3)(1-(-3))+3 (-3-5)+1 (5-1)}]

                                       = \dfrac{1}{2} [(-3)(1+3)+3 (-8)+1 (4)}]

                                      = \dfrac{1}{2} [-12-24+4]

                                     = \dfrac{1}{2} [-36+4]

                                    = \dfrac{1}{2} [-32]

                                   = 16

Area of triangle BCD = \dfrac{1}{2} [3(-3-1)+1 (1-1)-5(1+3)}]

= \dfrac{1}{2} [3(-4)+1 (0)-5(4)}]

= \dfrac{1}{2} [-12+0-20]

= \dfrac{1}{2} [-32]

= -16

Area of triangle ACD = \dfrac{1}{2} [-3(-3-1)+1 (1-5)-5(5+3)}]

= \dfrac{1}{2} [-3(-4)+1 (-4)-5(8)}]

= \dfrac{1}{2} [12-4-40}]

= \dfrac{1}{2} [-32}]

= 16

Area of triangle ABD = \dfrac{1}{2} [-3(1-1)+3 (1-5)-5(5-1)}]

= \dfrac{1}{2} [-3(0)+3 (-4)-5(4)}]

= \dfrac{1}{2} [0-12-20]

= 16

∵ The area of triangle are not collinear, then the given points are quadrilateral.

Thus, the points (- 3, 5), (3, 1),(1, - 3) and (- 5, 1) form a quadrilateral.

Answered by MaheswariS
6

\textbf{Given:}

\textsf{Points (-3,5),(3,1),(1,-3) and (-5,1)}

\textbf{To check:}

\textsf{The given points form a quadrilateral or not}

\textbf{Solution:}

\textsf{Let the given points be A(-3,5), B(3,1),C(1,-3) and D(-5,1)}

\textsf{First we fiind length of the sides}

\mathsf{AB=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}}

\mathsf{AB=\sqrt{(-3-3)^2+(5-1)^2}}

\mathsf{AB=\sqrt{36+16}}

\mathsf{AB=\sqrt{52}}

\mathsf{AB=\sqrt{4{\times}13}}

\mathsf{AB=2\sqrt{13}}

\mathsf{BC=\sqrt{(3-1)^2+(1+3)^2}}

\mathsf{BC=\sqrt{4+16}}

\mathsf{BC=\sqrt{20}}

\mathsf{BC=\sqrt{4{\times}5}}

\mathsf{BC=2\sqrt{5}}

\mathsf{CD=\sqrt{(1+5)^2+(-3-1)^2}}

\mathsf{CD=\sqrt{36+16}}

\mathsf{CD=\sqrt{52}}

\mathsf{CD=\sqrt{4{\times}13}}

\mathsf{CD=2\sqrt{13}}

\mathsf{AD=\sqrt{(-3+5)^2+(5-1)^2}}

\mathsf{AD=\sqrt{4+16}}

\mathsf{AD=\sqrt{20}}

\mathsf{AD=\sqrt{4{\times}5}}

\mathsf{AD=2\sqrt{5}}

\mathsf{AB=CD\;and\;BC=AD}

\implies\textsf{opposite sides are equal}

\mathsf{AC=\sqrt{(-3-1)^2+(5+3)^2}}

\mathsf{AC=\sqrt{16+64}}

\mathsf{AC=\sqrt{80}}

\mathsf{Now,}

\mathsf{AB^2+BC^2=52+20=72{\neq}AC^2}

\mathsf{\angle{B}{\neq}90^\circ}

\implies\textsf{ABCD is not  a rectangle}

\textsf{Hence ABCD is  a parallelogram}

Similar questions