Math, asked by asggamers045, 1 month ago

Show that the points (-4,-7)(-1,2)(8,5) (5,-4) aken in order are the vertices of a rhombus and find its area

Answers

Answered by jayant050
1

Answer:

,−4)

AB=

(−1−(−4))

2

+(2−(−7))

2

=

3

2

+9

2

=

90

=3

10

BC=

(8−(−1))

2

+(5−2)

2

=

9

2

+3

2

=

90

=3

10

CD=

(5−8)

2

+(−4−(5))

2

=

3

2

+9

2

=

90

=3

10

DA=

(−4−(5))

2

+(−7−(−4))

2

=

9

2

+3

2

=

90

=3

10

now ,

AC=

(8−(−4))

2

+(5−(−7))

2

=

(12)

2

+(12)

2

=

144

=12

2

BD=

(5−(−1))

2

+(−4−2)

2

=

6

2

+6

2

=

72

=6

2

Since , AB=CD=BC=DA,AC

=BD

so, it is rhombus.

Area of rhombus =

2

1

×12

2

×6

2

=

Answered by llMissCrispelloll
85

Answer:

Let the points are A(−4,−7),B(−1,2),C(8,5),D(5,−4)

AB=(−1−(−4))2+(2−(−7))2

        =32+92

        =90

         =310

BC=(8−(−1))2+(5−2)2

        =92+32

        =90

         =310

CD=(5−8)2+(−4−(5))2

        =32+92

        =90

         =310

DA=(−4−(5))2+(−7−(−4))

Similar questions