Math, asked by jainrishab3691, 1 year ago

Show that the points (5.-1,1),(7,-4,7),(1,-6,10) and (-1,-3,4)are the vertices of a rhombus

Answers

Answered by knjroopa
7

Step-by-step explanation:

Given Show that the points (5.-1,1),(7,-4,7),(1,-6,10) and (-1,-3,4)are the vertices of a rhombus

  • We have a rhombus ABCD and AB = BC = CD = DA
  • But AC^2  is not equal to AB^2 + BC^2
  • So angle B will not be equal to 90 degree
  • So the points are A = (5,-1,1), B = (7,-4,7), C = (1,-6, 10) and D = (1,-3,4)
  • So AB = √2^2 + 3^2 + 6^2
  •            = √49
  •           = 7 units
  • BC = √6^2 + 2^2 + 3^2
  •       = √49
  •       = 7 units
  • CD = √2^2 + 3^2 + 6^2
  •       = √49
  •       = 7 units
  • DA = √6^2 + 2^2 + 3^2
  •       = √49
  •       = 7 units.
  • So we have AB = BC = CD = DA
  • Now by checking we get
  • AC = √4^2 + 5^2 + 9^2
  •        = √122
  • AB^2 + BC^2 = 7^2 + 7^2
  •                           = 49 + 49
  •                           = 98  
  • This is not equal to AC^2
  • Therefore angle ABC is not equal to 90 degree.
  • Hence this is a rhombus.

Reference link will be

https://brainly.in/question/13032838

Similar questions