show that the points 7,10 3,-4 -2,5 are vertices of an isoceles traingle
Answers
Answered by
11
please mention the brackets nd coordinates properly...nd if it is the question of coordinate feometry use distance formula
(7,10) &(3,-4)
=√(3-7)²+(-4-10)²
=> √(-4)²+(-14)²
= √16+196=> √112
(3,-4)&(-2,5)=> √25+81=√106
(7,10)&(-2,5)=>√81+25=√106
so here two distances r same
(7,10) &(3,-4)
=√(3-7)²+(-4-10)²
=> √(-4)²+(-14)²
= √16+196=> √112
(3,-4)&(-2,5)=> √25+81=√106
(7,10)&(-2,5)=>√81+25=√106
so here two distances r same
patilshraddha49:
can u solve and tell me
Answered by
22
A(7,10) ,B(3,-4) ,C(-2,5)
AB = ✓[(7-3)²+(10+4)²]
AB=✓[4²+14²]
AB = ✓16+196
AB=✓212
BC = ✓[(3+2)²+(-4-5)²]
BC = ✓[5²+(-9)²]
BC = ✓(25+81)
BC = ✓106
AC = ✓[(-2-7)²+(5-10)²]
AC = ✓[(-9)²+(-5)²]
AC = ✓(81+25)
AC = ✓106
=>AB = AC ≠ BC
Therefore ABC is an isosceles triangle.
AB = ✓[(7-3)²+(10+4)²]
AB=✓[4²+14²]
AB = ✓16+196
AB=✓212
BC = ✓[(3+2)²+(-4-5)²]
BC = ✓[5²+(-9)²]
BC = ✓(25+81)
BC = ✓106
AC = ✓[(-2-7)²+(5-10)²]
AC = ✓[(-9)²+(-5)²]
AC = ✓(81+25)
AC = ✓106
=>AB = AC ≠ BC
Therefore ABC is an isosceles triangle.
Similar questions