Math, asked by pavithraSenthil21, 11 months ago

show that the points (7,9),(3,-7) and (-3,3) are the vertices of a right angled isosceles triangle​

Answers

Answered by Anonymous
33

 \:\:\:\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \huge\mathcal\red{\bf{\boxed{\underline{\huge\mathcal\blue{!!ANSWER!!}}}}}\: \:   \:  \\

let the points are...A (7,9);B(3,-7);C(-3,3).

now,the points would be the vertices of a right angled triangle.. if ..any one side is equal to the root of sum of other two sides...

\underline{\large\mathcal\red{!! solution!!}

ab =  \sqrt{(7 - 3) {}^{2}  + (9 + 7) {}^{2} }  =  \sqrt{4 {}^{2} + 16 {}^{2}  }  = 4 \sqrt{17}  \\  \\ bc =  \sqrt{(3 + 3) {}^{2} + ( - 7 - 3) {}^{2}  }  =   \sqrt{6 {}^{2}  + 10 {}^{2}} = 2 \sqrt{34}  \\  \\ ca =  \sqrt{( - 3 - 7) {}^{2}  + (3 - 9) {}^{2} }  =  \sqrt{10 {}^{2} + 6 {}^{2}  }  = 2 \sqrt{34}  \\  \\

Now ,from Pythagorean theorem....for a right angled triangle...

bc {}^{2}  + ca {}^{2}  = (2 \sqrt{34} ) {}^{2}  + (2 \sqrt{34} ) {}^{2}  = 272   \\  = (4 \sqrt{17} ) {}^{2}  = ab {}^{2}

so, ∆ABC is a right angled triangle.....

therefore,A,B,C are the vertices of a Right angled triangle.(proved).

Answered by Anonymous
17

Answer:

Hey mate plzz refer to the attachment

Attachments:
Similar questions