Show that the points (-8, 5, 2) (-5, 2, 2) (-7,6,6) (-4,3,6) are concyclic
Answers
Answered by
2
Given:
points- A(-8,5,2), B(-5,2,2), C(-7,6,6), D(-4,3,6)
To find:
Points are concyclic.
Solution:
For points to be concyclic,
BD × AC = AD×BC + AB×DC
by putting all the given values, we can calculate
√(-5-4)² + (2+3)² + (2+6)² × √(-8-7)² + (5+6)² + (2+6)²
= √(-8-4)² + (5+3)² + (2+6)² × √(-5-7)² + (2+6)² + (2+6)²
+ √(-8-5)² + (5+2)² + (2+2)² × √(-7-4)² + (6+3)² + (6+6)²
∵ √81+25+64 ×√225+121+64
= √144+64+64 × √144+64+64 + √169+49+8 × √121+81+144
∵ √170 × √410 = √272×√272 + √226×√346
∵ √69700 = √73984 + √78196
∵ 264.00 = 264.00
therefore, the given points are concyclic.
Similar questions