Math, asked by anurag1169, 8 months ago

show that the points A(0,0), B(3,0), C(4,1) , and D (1,1) form a parallelogram​

Answers

Answered by Anonymous
0

just see the attachment !

hope if helps !

follow me !

Attachments:
Answered by alpapatel8140
0

Answer:

Answer:AB= CD, AC=BD.

Answer:AB= CD, AC=BD.Step-by-step explanation:

Answer:AB= CD, AC=BD.Step-by-step explanation:AB^2 = (3)^2 + (0) ^2

Answer:AB= CD, AC=BD.Step-by-step explanation:AB^2 = (3)^2 + (0) ^2 AB^2 =9

Answer:AB= CD, AC=BD.Step-by-step explanation:AB^2 = (3)^2 + (0) ^2 AB^2 =9 AB = 3

Answer:AB= CD, AC=BD.Step-by-step explanation:AB^2 = (3)^2 + (0) ^2 AB^2 =9 AB = 3

Answer:AB= CD, AC=BD.Step-by-step explanation:AB^2 = (3)^2 + (0) ^2 AB^2 =9 AB = 3 BC^2= (3-4)^2 + (1)^2

Answer:AB= CD, AC=BD.Step-by-step explanation:AB^2 = (3)^2 + (0) ^2 AB^2 =9 AB = 3 BC^2= (3-4)^2 + (1)^2 BC^2=1+1

Answer:AB= CD, AC=BD.Step-by-step explanation:AB^2 = (3)^2 + (0) ^2 AB^2 =9 AB = 3 BC^2= (3-4)^2 + (1)^2 BC^2=1+1BC= 2

Answer:AB= CD, AC=BD.Step-by-step explanation:AB^2 = (3)^2 + (0) ^2 AB^2 =9 AB = 3 BC^2= (3-4)^2 + (1)^2 BC^2=1+1BC= √2CD^2 = (4-1)^2 + (1-1)^2

Answer:AB= CD, AC=BD.Step-by-step explanation:AB^2 = (3)^2 + (0) ^2 AB^2 =9 AB = 3 BC^2= (3-4)^2 + (1)^2 BC^2=1+1BC= √2CD^2 = (4-1)^2 + (1-1)^2CD^2= 9+0

Answer:AB= CD, AC=BD.Step-by-step explanation:AB^2 = (3)^2 + (0) ^2 AB^2 =9 AB = 3 BC^2= (3-4)^2 + (1)^2 BC^2=1+1BC= √2CD^2 = (4-1)^2 + (1-1)^2CD^2= 9+0CD = 3

Answer:AB= CD, AC=BD.Step-by-step explanation:AB^2 = (3)^2 + (0) ^2 AB^2 =9 AB = 3 BC^2= (3-4)^2 + (1)^2 BC^2=1+1BC= √2CD^2 = (4-1)^2 + (1-1)^2CD^2= 9+0CD = 3AD^2= (1)^2 +(1)^2

Answer:AB= CD, AC=BD.Step-by-step explanation:AB^2 = (3)^2 + (0) ^2 AB^2 =9 AB = 3 BC^2= (3-4)^2 + (1)^2 BC^2=1+1BC= √2CD^2 = (4-1)^2 + (1-1)^2CD^2= 9+0CD = 3AD^2= (1)^2 +(1)^2AD^2= 2

Answer:AB= CD, AC=BD.Step-by-step explanation:AB^2 = (3)^2 + (0) ^2 AB^2 =9 AB = 3 BC^2= (3-4)^2 + (1)^2 BC^2=1+1BC= √2CD^2 = (4-1)^2 + (1-1)^2CD^2= 9+0CD = 3AD^2= (1)^2 +(1)^2AD^2= 2AD = 2

Answer:AB= CD, AC=BD.Step-by-step explanation:AB^2 = (3)^2 + (0) ^2 AB^2 =9 AB = 3 BC^2= (3-4)^2 + (1)^2 BC^2=1+1BC= √2CD^2 = (4-1)^2 + (1-1)^2CD^2= 9+0CD = 3AD^2= (1)^2 +(1)^2AD^2= 2AD = √2 AC^2 = (4)^2+(1)^2

Answer:AB= CD, AC=BD.Step-by-step explanation:AB^2 = (3)^2 + (0) ^2 AB^2 =9 AB = 3 BC^2= (3-4)^2 + (1)^2 BC^2=1+1BC= √2CD^2 = (4-1)^2 + (1-1)^2CD^2= 9+0CD = 3AD^2= (1)^2 +(1)^2AD^2= 2AD = √2 AC^2 = (4)^2+(1)^2AC^2= 16+1

Answer:AB= CD, AC=BD.Step-by-step explanation:AB^2 = (3)^2 + (0) ^2 AB^2 =9 AB = 3 BC^2= (3-4)^2 + (1)^2 BC^2=1+1BC= √2CD^2 = (4-1)^2 + (1-1)^2CD^2= 9+0CD = 3AD^2= (1)^2 +(1)^2AD^2= 2AD = √2 AC^2 = (4)^2+(1)^2AC^2= 16+1AC= 17

Answer:AB= CD, AC=BD.Step-by-step explanation:AB^2 = (3)^2 + (0) ^2 AB^2 =9 AB = 3 BC^2= (3-4)^2 + (1)^2 BC^2=1+1BC= √2CD^2 = (4-1)^2 + (1-1)^2CD^2= 9+0CD = 3AD^2= (1)^2 +(1)^2AD^2= 2AD = √2 AC^2 = (4)^2+(1)^2AC^2= 16+1AC= √17BD^2= (3-1)^2+(1)^2

Answer:AB= CD, AC=BD.Step-by-step explanation:AB^2 = (3)^2 + (0) ^2 AB^2 =9 AB = 3 BC^2= (3-4)^2 + (1)^2 BC^2=1+1BC= √2CD^2 = (4-1)^2 + (1-1)^2CD^2= 9+0CD = 3AD^2= (1)^2 +(1)^2AD^2= 2AD = √2 AC^2 = (4)^2+(1)^2AC^2= 16+1AC= √17BD^2= (3-1)^2+(1)^2BD^2= 4+1

Answer:AB= CD, AC=BD.Step-by-step explanation:AB^2 = (3)^2 + (0) ^2 AB^2 =9 AB = 3 BC^2= (3-4)^2 + (1)^2 BC^2=1+1BC= √2CD^2 = (4-1)^2 + (1-1)^2CD^2= 9+0CD = 3AD^2= (1)^2 +(1)^2AD^2= 2AD = √2 AC^2 = (4)^2+(1)^2AC^2= 16+1AC= √17BD^2= (3-1)^2+(1)^2BD^2= 4+1BD = 5

Answer:AB= CD, AC=BD.Step-by-step explanation:AB^2 = (3)^2 + (0) ^2 AB^2 =9 AB = 3 BC^2= (3-4)^2 + (1)^2 BC^2=1+1BC= √2CD^2 = (4-1)^2 + (1-1)^2CD^2= 9+0CD = 3AD^2= (1)^2 +(1)^2AD^2= 2AD = √2 AC^2 = (4)^2+(1)^2AC^2= 16+1AC= √17BD^2= (3-1)^2+(1)^2BD^2= 4+1BD = √5SO THAT,

Answer:AB= CD, AC=BD.Step-by-step explanation:AB^2 = (3)^2 + (0) ^2 AB^2 =9 AB = 3 BC^2= (3-4)^2 + (1)^2 BC^2=1+1BC= √2CD^2 = (4-1)^2 + (1-1)^2CD^2= 9+0CD = 3AD^2= (1)^2 +(1)^2AD^2= 2AD = √2 AC^2 = (4)^2+(1)^2AC^2= 16+1AC= √17BD^2= (3-1)^2+(1)^2BD^2= 4+1BD = √5SO THAT, AB=CD, AC= BD,AD= BC

Answer:AB= CD, AC=BD.Step-by-step explanation:AB^2 = (3)^2 + (0) ^2 AB^2 =9 AB = 3 BC^2= (3-4)^2 + (1)^2 BC^2=1+1BC= √2CD^2 = (4-1)^2 + (1-1)^2CD^2= 9+0CD = 3AD^2= (1)^2 +(1)^2AD^2= 2AD = √2 AC^2 = (4)^2+(1)^2AC^2= 16+1AC= √17BD^2= (3-1)^2+(1)^2BD^2= 4+1BD = √5SO THAT, AB=CD, AC= BD,AD= BCTHIS IS A PARALLOGRAM ..............

Similar questions
Math, 4 months ago