Math, asked by mh4410878, 7 hours ago

show that the points A(1, 2,7), B(2, 6,3) and C(3, 10,-1) are collinear using vectors​

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given coordinates are

➢ Coordinates of A is (1, 2, 7)

➢ Coordinates of B are (2, 6, 3)

➢ Coordinates of C are (3, 10, - 1)

So, it means

\rm :\longmapsto\:\vec{OA} = \hat{i} + 2\hat{j} +7 \hat{k}

\rm :\longmapsto\:\vec{OB} = 2\hat{i} + 6\hat{j} +3 \hat{k}

\rm :\longmapsto\:\vec{OC} = 3\hat{i} + 10\hat{j} -  \hat{k}

Now, Consider

\rm :\longmapsto\:\vec{AB}

\rm \:  =  \: \vec{OB} - \vec{OA}

\rm \:  =  \: 2\hat{i} + 6\hat{j} + 3\hat{k} - (\hat{i} + 2\hat{j} + 7\hat{k})

\rm \:  =  \: 2\hat{i} + 6\hat{j} + 3\hat{k} - \hat{i}  -  2\hat{j} - 7\hat{k}

\rm \:  =  \: \hat{i} + 4\hat{j}  -  4\hat{k}

 \red{\rm\implies \:\vec{AB} =  \: \hat{i} + 4\hat{j}  -  4\hat{k} -  -  - (1)}

Now, Consider

\rm :\longmapsto\:\vec{BC}

\rm \:  =  \:\vec{OC} - \vec{OB}

\rm \:  =  \: 3\hat{i} + 10\hat{j} - \hat{k} - (2\hat{i} + 6\hat{j} + 3\hat{k})

\rm \:  =  \: 3\hat{i} + 10\hat{j} - \hat{k} - 2\hat{i}  -  6\hat{j}  -  3\hat{k}

\rm \:  =  \: \hat{i} + 4\hat{j} - 4\hat{k}

\rm \:  =  \: \vec{AB}

\bf\implies \:\vec{AB} = \vec{BC}

\bf\implies \:\vec{AB} \:   \parallel \: \vec{BC}

\bf\implies \:A, \: B, \: C \: are \: collinear

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to Know

\rm :\longmapsto\:\boxed{\tt{ \vec{A}.\vec{B} = \vec{B}.\vec{A} \: }}

\rm :\longmapsto\:\boxed{\tt{ \vec{A} \times \vec{B} = -  \vec{B} \times \vec{A} \: }}

\rm :\longmapsto\:\boxed{\tt{ \vec{A} \times \vec{B} = 0\rm\implies \:\vec{A} \:  \parallel \: \vec{B} \: }}

\rm :\longmapsto\:\boxed{\tt{ \vec{A} .\vec{B} = 0\rm\implies \:\vec{A} \:  \perp \: \vec{B} \: }}

\rm :\longmapsto\:\boxed{\tt{ \vec{A}  \times \vec{A}= 0 \: }}

Answered by HarshitJaiswal2534
0

Step-by-step explanation:

\large\underline{\sf{Solution-}}

Given coordinates are

➢ Coordinates of A is (1, 2, 7)

➢ Coordinates of B are (2, 6, 3)

➢ Coordinates of C are (3, 10, - 1)

So, it means

\rm :\longmapsto\:\vec{OA} = \hat{i} + 2\hat{j} +7 \hat{k}

\rm :\longmapsto\:\vec{OB} = 2\hat{i} + 6\hat{j} +3 \hat{k}

\rm :\longmapsto\:\vec{OC} = 3\hat{i} + 10\hat{j} -  \hat{k}

Now, Consider

\rm :\longmapsto\:\vec{AB}

\rm \:  =  \: \vec{OB} - \vec{OA}

\rm \:  =  \: 2\hat{i} + 6\hat{j} + 3\hat{k} - (\hat{i} + 2\hat{j} + 7\hat{k})

\rm \:  =  \: 2\hat{i} + 6\hat{j} + 3\hat{k} - \hat{i}  -  2\hat{j} - 7\hat{k}

\rm \:  =  \: \hat{i} + 4\hat{j}  -  4\hat{k}

 \red{\rm\implies \:\vec{AB} =  \: \hat{i} + 4\hat{j}  -  4\hat{k} -  -  - (1)}

Now, Consider

\rm :\longmapsto\:\vec{BC}

\rm \:  =  \:\vec{OC} - \vec{OB}

\rm \:  =  \: 3\hat{i} + 10\hat{j} - \hat{k} - (2\hat{i} + 6\hat{j} + 3\hat{k})

\rm \:  =  \: 3\hat{i} + 10\hat{j} - \hat{k} - 2\hat{i}  -  6\hat{j}  -  3\hat{k}

\rm \:  =  \: \hat{i} + 4\hat{j} - 4\hat{k}

\rm \:  =  \: \vec{AB}

\bf\implies \:\vec{AB} = \vec{BC}

\bf\implies \:\vec{AB} \:   \parallel \: \vec{BC}

\bf\implies \:A, \: B, \: C \: are \: collinear

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to Know

\rm :\longmapsto\:\boxed{\tt{ \vec{A}.\vec{B} = \vec{B}.\vec{A} \: }}

\rm :\longmapsto\:\boxed{\tt{ \vec{A} \times \vec{B} = -  \vec{B} \times \vec{A} \: }}

\rm :\longmapsto\:\boxed{\tt{ \vec{A} \times \vec{B} = 0\rm\implies \:\vec{A} \:  \parallel \: \vec{B} \: }}

\rm :\longmapsto\:\boxed{\tt{ \vec{A} .\vec{B} = 0\rm\implies \:\vec{A} \:  \perp \: \vec{B} \: }}

\rm :\longmapsto\:\boxed{\tt{ \vec{A}  \times \vec{A}= 0 \: }}

Similar questions