Math, asked by gayusuha, 8 months ago


Show that the points A (3, 5), B (6, 0), C (1, -3) and D (-2, 2) are the vertices of a square ABCD

Answers

Answered by raunakdubey12
1

Answer:

No, the points the vertices of a square ABCD

Please mark as brainlist

Answered by palaksalla
0

Answer:

The points A ( 3 , 5 ), B ( 6 , 0 ), C ( 1 , -3 ) and D ( -2 , 2 ) are the vertices of a square ABCD.

\bullet \bf \ Distance \ formula = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}∙ Distance formula=

(x

2

−x

1

)

2

+(y

2

−y

1

)

2

\bullet \ \sf A B = \sqrt{(6-3)^2+(0-5)^2}∙ AB=

(6−3)

2

+(0−5)

2

\begin{gathered}= \sf \sqrt{3^2+(-5)^2} \\\\= \sqrt{9+25} \\\\= \sqrt{34} \ units\end{gathered}

=

3

2

+(−5)

2

=

9+25

=

34

units

\bullet \sf \ BC = \sqrt{(1-6)^2+(-3-0)^3}∙ BC=

(1−6)

2

+(−3−0)

3

\begin{gathered}= \sf \sqrt{(-5)^2+(-3)^2} \\\\= \sqrt{25+9} \\\\= \sqrt{34} \ units\end{gathered}

=

(−5)

2

+(−3)

2

=

25+9

=

34

units

\bullet \sf \ CD = \sqrt{(-2-1)^2+(2-(-3))^2}∙ CD=

(−2−1)

2

+(2−(−3))

2

\begin{gathered}= \sf \sqrt{(-3)^2+5^2} \\\\= \sqrt{9+25} \\\\= \sqrt{34} \ units\end{gathered}

=

(−3)

2

+5

2

=

9+25

=

34

units

\bullet \sf \ AD = \sqrt{(-2-3)^2+(2-5)^2}∙ AD=

(−2−3)

2

+(2−5)

2

\begin{gathered}= \sf \sqrt{(-5)^2+(-3)^2} \\\\=\sqrt{25+9 } \\\\= \sqrt{34} \ units\end{gathered}

=

(−5)

2

+(−3)

2

=

25+9

=

34

units

∴ AB = BC = CD = AD

That is,

Sides are of equal length.

\bullet \sf \ Diagonal \ AC = \sqrt{(1-3)^2+(-3-5)^2}∙ Diagonal AC=

(1−3)

2

+(−3−5)

2

\begin{gathered}= \sf \sqrt{(-2)^2+(-8)^2} \\\\= \sqrt{4+64} \\\\= \sqrt{68} \ units\end{gathered}

=

(−2)

2

+(−8)

2

=

4+64

=

68

units

\bullet \sf \ Diagonal \ BD = \sqrt{(-2-6)^2+(2-0)^2}∙ Diagonal BD=

(−2−6)

2

+(2−0)

2

\begin{gathered}= \sf \sqrt{(-8)^2+2^2} \\\\=\sqrt{64+4} \\\\= \sqrt{68} \ units\end{gathered}

=

(−8)

2

+2

2

=

64+4

=

68

units

∴ AC = BD

That is,

Diagonals are equal.

Since sides and diagonals are equal, the given points are the vertices of the square ABCD

Similar questions