Math, asked by Anonymous, 10 months ago

show that the points A(4,0) B(10,0)C(4,8) are the vertices of right angled triangle and also show that the midpoint of the hypotenuse is equidistant from the angular point​

Answers

Answered by srikanthn711
51

\huge\boxed{\underline{\mathcal{\red{A} \green{N}\pink{S}\orange{W}\blue{E}\pink{R}}}}

<body bgcolor="black"><font color="yellow">

Taking A(4, 0), B(10, 0) and C(4, 8)

AB² = (4-10)² + (0-0)²

= 36+0

=36

AC² = (4 -4)² + (0-8)²

= 0+64

=64

BC² = (10-4)² + (0-8)²

=64+36

=100

By Pythogoras theorem

Since AB² = AC² + BC², the points A(4, 0), B(10, 0) and C(4, 8) are vertices of a right angled triangle.

AB is the hypotenuse.

Mid-point of AB = [(10+4)/2 , (0+0)/2]

= (7, 0)

Let the mid-point be M (7, 0)

AM = √(4-5)² + (0)²

= √-1+0

= √-1

MB = √(7-10)² + (0-0)²

= √1+0

AM = MB = √1

This proves that the midpoint of the hypotenuse is equidistant from the angular points.

{\bf{\orange{FOLLOW ME}}}

Answered by Anonymous
56

Step-by-step explanation:

Step-by-step explanation:

x^2 - 4x - 5 = 0

x^2 -5x + x -5 = 0

x( x -5 ) + 1( x - 5) = 0

( x + 1)( x -5 ) = 0

x = - 1 and x = 5

<div style="color: #FFFFFF; font: normal 18px arial, sans-serif; background-color: #347c17; border: #ff0000 4px solid; width: 70%; margin: 0 auto; padding: 4px 5px 3px 5px; -moz-border-radius: 17px; -webkit-border-radius: 17px; border-radius: 17px; -moz-box-shadow: 5px 5px 5px rgba(0, 0, 0, 0.20); -webkit-box-shadow: 5px 5px 5px rgba(0, 0, 0, 0.20); box-shadow: 5px 5px 5px rgba(0, 0, 0, 0.20);"><marquee scrolldelay="250"><b><u>Happy birthday dear</u> </b></marquee>

<p style="color:cyan;font-family:cursive;background:black;font size:40px;">..</p> Apke liye phone and Ghar me rahiyega

<p style="color:blue;font-family:cursive;background:pink;font-size:30px;">happy happy happy birthday sorry name bhul gaya..</p>

Similar questions