Math, asked by Anonymous, 9 months ago

show that the points A(4,0) B(10,0)C(4,8) are the vertices of right angled triangle and also show that the midpoint of the hypotenuse is equidistant from the angular point​

Answers

Answered by srikanthn711
51

\huge\boxed{\underline{\mathcal{\red{A} \green{N}\pink{S}\orange{W}\blue{E}\pink{R}}}}

<body bgcolor="black"><font color="yellow">

Taking A(4, 0), B(10, 0) and C(4, 8)

AB² = (4-10)² + (0-0)²

= 36+0

=36

AC² = (4 -4)² + (0-8)²

= 0+64

=64

BC² = (10-4)² + (0-8)²

=64+36

=100

By Pythogoras theorem

Since AB² = AC² + BC², the points A(4, 0), B(10, 0) and C(4, 8) are vertices of a right angled triangle.

AB is the hypotenuse.

Mid-point of AB = [(10+4)/2 , (0+0)/2]

= (7, 0)

Let the mid-point be M (7, 0)

AM = √(4-5)² + (0)²

= √-1+0

= √-1

MB = √(7-10)² + (0-0)²

= √1+0

AM = MB = √1

This proves that the midpoint of the hypotenuse is equidistant from the angular points.

{\bf{\orange{FOLLOW ME}}}

Answered by Anonymous
56

Step-by-step explanation:

Step-by-step explanation:

x^2 - 4x - 5 = 0

x^2 -5x + x -5 = 0

x( x -5 ) + 1( x - 5) = 0

( x + 1)( x -5 ) = 0

x = - 1 and x = 5

<div style="color: #FFFFFF; font: normal 18px arial, sans-serif; background-color: #347c17; border: #ff0000 4px solid; width: 70%; margin: 0 auto; padding: 4px 5px 3px 5px; -moz-border-radius: 17px; -webkit-border-radius: 17px; border-radius: 17px; -moz-box-shadow: 5px 5px 5px rgba(0, 0, 0, 0.20); -webkit-box-shadow: 5px 5px 5px rgba(0, 0, 0, 0.20); box-shadow: 5px 5px 5px rgba(0, 0, 0, 0.20);"><marquee scrolldelay="250"><b><u>Happy birthday dear</u> </b></marquee>

<p style="color:cyan;font-family:cursive;background:black;font size:40px;">..</p> Apke liye phone and Ghar me rahiyega

<p style="color:blue;font-family:cursive;background:pink;font-size:30px;">happy happy happy birthday sorry name bhul gaya..</p>

Similar questions