Math, asked by Adhikary4377, 11 months ago

Show that the points A(- 4, -1), B(-2, - 4), C(4, 0) and D(2, 3) are the vertices points of a rectangle.

Answers

Answered by dheerajk1912
4

Step-by-step explanation:

  • Co-ordinate of vertices is given as

        \mathbf{A(x_{1},y_{1})=(-4,-1)}

        \mathbf{B(x_{2},y_{2})=(-2,-4)}

        \mathbf{C(x_{3},y_{3})=(4,0)}

        \mathbf{D(x_{4},y_{4})=(2,3)}

  • Magnitude of side AB by distance formula

        \mathbf{AB=\sqrt{(x_{1}-x_{2})^{2}+(y_{1}-y_{2})^{2}}}

        \mathbf{AB=\sqrt{(-4+2)^{2}+(-1+4)^{2}}=\sqrt{4+9}=\sqrt{13}}

  • Magnitude of side BC by distance formula

        \mathbf{BC=\sqrt{(x_{2}-x_{3})^{2}+(y_{2}-y_{3})^{2}}}

        \mathbf{BC=\sqrt{(-2-4)^{2}+(-4-0)^{2}}=\sqrt{36+16}=\sqrt{52}}

  • Magnitude of side CD by distance formula

        \mathbf{CD=\sqrt{(x_{3}-x_{4})^{2}+(y_{3}-y_{4})^{2}}}

        \mathbf{CD=\sqrt{(4-2)^{2}+(0-3)^{2}}=\sqrt{4+9}=\sqrt{13}}

  • Magnitude of side DA by distance formula

        \mathbf{DA=\sqrt{(x_{4}-x_{1})^{2}+(y_{4}-y_{1})^{2}}}

        \mathbf{DA=\sqrt{(2+4)^{2}+(3+1)^{2}}=\sqrt{36+16}=\sqrt{52}}

  • Magnitude of diagonal AC by distance formula

        \mathbf{AC=\sqrt{(x_{1}-x_{3})^{2}+(y_{1}-y_{3})^{2}}}

        \mathbf{AC=\sqrt{(-4-4)^{2}+(-1-0)^{2}}=\sqrt{64+1}=\sqrt{65}}

  • Magnitude of diagonal BD by distance formula

        \mathbf{BD=\sqrt{(x_{2}-x_{4})^{2}+(y_{2}-y_{4})^{2}}}

        \mathbf{BD=\sqrt{(-2-2)^{2}+(-4-3)^{2}}=\sqrt{16+49}=\sqrt{65}}

  • AB = CD

         BC =DA

         AC = BD

  • Here we see that opposite side are equal and both diagonal are equal, hence given vertices are vertices of rectangle.

Similar questions