Show that the points A( - 6, 10 ) , B( - 4, 6 ) and C( 3, -8 ) are collinear. Find ratio between AB and AC.
Answers
Answer:
2:9
Step-by-step explanation:
Distance formula D = √(x₂ - x₁)² + (y₂ - y₁)²
Given: A(-6,10),B(-4,6) and C(3,-8)
⇒ AB = √(-4 + 6)² + (6 - 10)²
= √(2)² + (-4)²
= √20.
= 2√5
⇒ BC = √(3 + 4)² + (-8 - 6)²
= √(7)² + (-14)²
= √245
= 7√5
⇒ AC = √(3 + 6)² + (-8 - 10)²
= √(9)² + (-18)²
= √405
= 9√5
Now, AB + BC = 2√5 + 7√5 = 9√5 = AC.
Therefore,the points are collinear.
Also, AB : AC = 2√5/9√5
= 2/9
= 2:9
Therefore, ratio between AB and AC = 2:9.
Hope it helps!
Answer:
2:9
Step-by-step explanation:
Given: A(-6,10),B(-4,6) and C(3,-8)
⇒ AB = √(-4 + 6)² + (6 - 10)²
= √(2)² + (-4)²
= √20.
= 2√5
⇒ BC = √(3 + 4)² + (-8 - 6)²
= √(7)² + (-14)²
= √245
= 7√5
⇒ AC = √(3 + 6)² + (-8 - 10)²
= √(9)² + (-18)²
= √405
= 9√5
Now, AB + BC = 2√5 + 7√5 = 9√5 = AC.
Therefore,the points are collinear.
Also, AB : AC = 2√5/9√5
= 2/9
= 2:9
Therefore, ratio between AB and AC = 2:9.