Math, asked by sarbani30, 3 months ago

Show that the points (a,a), (–a, –a) and (-√3a, √3a) are the vertices of an equilateral triangle.

Maths, class 10.​

Answers

Answered by aryan073
7

Given :

•The points of the given triangle :

A=(a, a)

B=(-a, -a)

C=(-3a, 3a)

To Find :

We have to show that the triangle with vertices A(a,a) , B(-a, -a) ,C(-√3a, √3a) is an equilateral triangle =?

Solution :

Let A(a,a) ,B(-a, -a) ,C(-√3a, √3a) be the points of triangle.

Now ,the length of AB=

  \\ \implies \sf \:   \sqrt{ {(a - ( - a))}^{2}  +  {(a - ( - a))}^{2} }

 \implies \sf  \sqrt{8 {a}^{2} }

 \implies \sf \: 2 \sqrt{2} a\:  units

Now, the length of BC=

 \\  \implies \sf \:  \sqrt{ {( - a +  \sqrt{3a} )}^{2} +  {( - a -  \sqrt{3a} )}^{2}  }

 \implies \sf \:  \sqrt{2( {a}^{2}  +  {( \sqrt{3}a) }^{2}) }

 \implies \sf \: 2 \sqrt{2} a \: units

Since we know that,

  \\ \red \bigstar \boxed{ \bf{ {(a + b)}^{2}  +  {(a - b)}^{2}  = 2( {a}^{2} +  {b}^{2}  )}}

Again, the length of CA

  \\ \implies \sf \:  \sqrt{ {(a +  \sqrt{3}a) }^{2} +  {(a -  \sqrt{3}a) }^{2}  }

 \implies \sf \:  \sqrt{2( {a}^{2}  +   {( \sqrt{3}a) }^{2} ) }

 \implies \sf \: 2 \sqrt{2} a \: units

\red\bigstar\boxed{\sf{AB=BC=CA=2 \sqrt{2} a \: units}}

Therefore, all the sides of the triangle are equal in length and hence the triangle is an equilateral triangle.

Similar questions