Math, asked by Gokusparx, 1 year ago

show that the points(a,a),(-a -a)and (-√3a,√3a) are vertices of an equilateral side.

Answers

Answered by avadacrucio
8
Hope it helps and if you find it satisfactory then please mark it as brainliest
Attachments:
Answered by Anonymous
13

\textbf{\underline{\underline{According\:to\:the\:Question}}}

Assumption

P(a,a)

Q(-a , -a)

R(-√3a , √3a)

\large{\sf\:{PQ=\sqrt{(-a-a)^2+(-a-a)^2}}}

\large{\sf\:{PQ=\sqrt{(4a)^2+(4a)^2}}}

\large{\sf\:{PQ=2\sqrt{2}a}}

Now

\large{\sf\:{QR=\sqrt{(-\sqrt{3}a+a)^2+(\sqrt{3}a+a)^2}}}

\large{\sf\:{QR=\sqrt{3a^2+a^2-2\sqrt{3}a^2+3a^2+a^2+2\sqrt{3}a^2}}}

\large{\sf\:{QR=\sqrt{8a^2}}}

\large{\sf\:{QR=2\sqrt{2}a}}

Now

\large{\sf\:{PR=\sqrt{(-\sqrt{3}a-a)^2+(\sqrt{3}a-a)^2}}}

\large{\sf\:{PR=\sqrt{3a^2+a^2+2\sqrt{3}a^2+3a^2+a^2-2\sqrt{3}a^2}}}

\large{\sf\:{PR=\sqrt{8a^2}}}

\large{\sf\:{PR=2\sqrt{2a}}}

Therefore,

PQ = QR = PS = 2√2a

Therefore,

∆PQR is an equilateral Triangle

Similar questions