Math, asked by Rolfshetch88755, 2 months ago

Show that the points M(-1, 4), N(-5, 3), P(1-3) and Q(5,-2) are the vertices of a parallelogram.​

Answers

Answered by ItzMarvels
12

Required Answer

Let,

 \sf{x_1 =  - 1 } \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:\: \:  \:  \sf{y_1 = 4} \\  \sf{x_2 =  - 5} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{y_2 = 3} \\    \:  \:  \: \: \sf{x_3 = 1} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \: \:  \sf{y_3 =  - 3} \\ \sf{x_4= 5} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{y_4 =  - 2}

By using mid point formula.

 \sf{ \mid{\overline{MN}} \mid}  = \sqrt{(y_2- y_1)^{2} +  (x_2 - x_1)^{2}}

\: \: \:\: \: \: \: \: \: \:= \sqrt{(3- 4)^{2} +  (-5 - (-1))^{2}}

\: \: \:\: \: \: \: \: \: \:= \sqrt{(- 1)^{2} +  (-4)^{2}}

\: \: \:\: \: \: \: \: \: \:= \sqrt{1+ 16}

\: \:\: \: \: \: \: \: \: \:= \sqrt{17}

 \sf{ \mid{\overline{NP}} \mid}  = \sqrt{(y_3- y_2)^{2} +  (x_3 - x_2)^{2}}

\: \: \:\: \: \: \: \: \: \:= \sqrt{(-3- 3)^{2} +  (1 - (-5))^{2}}

\: \: \:\: \: \: \: \: \: \:= \sqrt{(6)^{2} +  (6)^{2}}

\: \: \:\: \: \: \: \: \: \:= \sqrt{36+ 36}

\: \:\: \: \: \: \: \: \: \:= \sqrt{72}

 \sf{ \mid{\overline{PQ}} \mid}  = \sqrt{(y_4- y_3)^{2} +  (x_4 - x_3)^{2}}

\: \: \:\: \: \: \: \: \: \:= \sqrt{(-2- (-3))^{2} +  (5 - 1)^{2}}

\: \: \:\: \: \: \: \: \: \:= \sqrt{(1)^{2} +  (4)^{2}}

\: \: \:\: \: \: \: \: \: \:= \sqrt{1+ 16}

\: \:\: \: \: \: \: \: \: \:= \sqrt{17}

 \sf{ \mid{\overline{QM}} \mid}  = \sqrt{(y_1- y_4)^{2} +  (x_1- x_4)^{2}}

\: \: \:\: \: \: \: \: \: \:= \sqrt{(4 - (-2))^{2} +  (-1 - 5)^{2}}

\: \: \:\: \: \: \: \: \: \:= \sqrt{(6)^{2} +  (-6)^{2}}

\: \: \:\: \: \: \: \: \: \:= \sqrt{36+ 36}

\: \:\: \: \: \: \: \: \: \:= \sqrt{72}

Hence,

\mid{\overline{MN}}\mid=\mid{\overline{QP}}\mid

\mid{\overline{NP}}\mid=\mid{\overline{QM}}\mid

\underline\mathfrak\red{So\: given\: verticals\: are \:parallelogram.}

Attachments:
Similar questions