Math, asked by babajanjks558, 1 month ago

Show that the points of a (0,-1) b(-2,3) c(6,7) and d(8,3) are the vertices of a rectangle ABCD

Answers

Answered by Anonymous
64

Answer:

{ \large{ \pmb{ \sf{★Given... }}}}

A(0, -1)

B(-2, 3)

C(6, 7)

D(8, 3)

{ \large{ \pmb{ \sf{★To  \: Find... }}}}

Show that points are vertices of rectangle..?

{ \large{ \pmb{ \sf{ ★Used  \: Formula...}}}}

{ \sf{Distance =  \sqrt{ {( x_{2} -x_{1} )}^{2}  + {( y_{2} -  y_{1})}^{2}  } }}

{ \large{ \pmb{ \sf{★Solution... }}}}

Sides:

{ \implies{ \sf{AB =  \sqrt{ {( - 2 - 0)}^{2}  +  {(3 - ( - 1))}^{2} }  }}}

{ \implies{ \sf{AB =  \sqrt{ {( - 2)}^{2}  +  {(3 +  1)}^{2} } }}}

{ \implies{ \sf{AB =  \sqrt{4 + 16} }}}

{ \implies{ \sf{AB =  \sqrt{20} }}}

{ \implies{ \bf{AB = 2 \sqrt{5} }}}

____________________________

{ \implies{ \sf{BC =  \sqrt{ {(6 - ( - 2))}^{2}  +  {(7 - 3)}^{2} } }}}

{ \implies{ \sf{BC =  \sqrt{ {(6 + 2)}^{2}  +  {(4)}^{2} } }}}

{ \implies{ \sf{BC =  \sqrt{64 + 16} }}}

 { \implies{ \bf{BC =  \sqrt{70} }}}

_____________________________

{ \implies{ \sf{CD =  \sqrt{ {(8 - 6)}^{2}  +  {(3 - 7)}^{2} } }}}

 \: { \implies{ \sf{CD =  \sqrt{ {( - 2)}^{2} +  {( - 4)}^{2}  } }}}

 \: { \implies{ \sf{CD =  \sqrt{4 + 16} }}}

 \: { \implies{ \sf{CD =  \sqrt{20} }}}

 \: { \implies{ \bf{CD = 2 \sqrt{5} }}}

____________________________

{ \implies{ \sf{DA = \sqrt{ {(0 - 8)}^{2}  +  {( - 1 - 3)}^{2}}  }}}

 \: { \implies{ \sf{DA = \sqrt{ {(8)}^{2} +  {(4)}^{2}  }  }}}

 \: { \implies{ \sf{DA =  \sqrt{64 + 16} }}}

 \: { \implies{ \bf{DA =  \sqrt{70} }}}

____________________________

Diagnols:

{ \implies{ \sf{AC =  \sqrt{ {(6 - 0)}^{2} +  {(7 + 1)}^{2}  } }}}

 \: { \implies{ \sf{AC =  \sqrt{ {(6)}^{2} +  {(8)}^{2}  } }}}

 \: { \implies{ \sf{AC =  \sqrt{36 + 64} }}}

 \: { \implies{ \sf{AC =  \sqrt{100} }}}

 \: { \implies{ \bf{AC = 10}}}

______________________________

{ \implies{ \sf{BD =  \sqrt{ {(8 + 2)}^{2} +  {(3 - 3)}^{2}  } }}}

 \: { \implies{ \sf{BD =  \sqrt{ {(10)}^{2} +  {(0)}^{2}  } }}}

 \: { \implies{ \sf{BD =  \sqrt{100} }}}

 \: { \implies{ \bf{BD = 10}}}

______________________________

From this,

Opposite sides are equal AB = CD, BC = DA

Diangnols are equal AC = BD

{ \large{ \pmb{ \sf{★Final  \: Answer... }}}}

The given points form a Rectangle

These points are vertices of Rectangle

Similar questions