Show that the points P (1,1) Q(-1,-1) R(√-3, √3) are a part of a equilateral triangle. show steps
Answers
Distance formula
d=√(x2-x1)²+(y2-y1)²
Step-by-step explanation:
Given
P(1,1) Q(-1,-1) R(√-3, √3) are a part of a equilateral ∆
Distance formula
d=√(x2-x1)²+(y2-y1)²
PQ = √{ ( -1 - 1 )² +( -1 - 1 )² }
= √{ ( -2 )² + ( -2 )²}
= √{ 4 + 4 } = √8
PQ = 2√2
similarly for QR & RP
QR = √{ ( [-√3] - [-1] )² + ( √3 - [-1] )² }
= √{ (-√3 +1 )² + ( √3 +1 )² }
= √{ 3 + 1 - 2√3 + 3 + 1 + 2√3
=√8
QR = 2√2
RP= √{ ( 1 - [-√3] )² +( 1 - √3 )² }
= √{ (1 + √3 )² +( 1 - √3 )² }
= √{ 1+ 3 + 2√3 + 1+ 3 - 2√3 }
=√8
RP = 2√2
PQ = QR = RP
Hence
P (1,1) Q(-1,-1) R(√-3, √3) are a part of a equilateral triangle.