Math, asked by starlord2519, 16 hours ago

Show that the position vector of the points are 2a+5b-4c,a+4b-3c,4a+7b-6c collinear​

Answers

Answered by rishika4466
0

Answer:

refer to the Attachment

Answered by vikkiain
1

use \:  \: AB+BC=AC

Step-by-step explanation:

Let,  \: A = 2a + 5b - 4c, \:  B = a + 4b - 3c, \: and \:  \:  C = 4a + 7b - 6c \\ then, \:  \:  AB = (a + 4b - 3c) - (2a + 5b - 4c) =  - a - b + c \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: BC = (4a + 7b - 6c) - (a + 4b - 3c) = 3a + 3b - 3c \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: AC = (4a + 7b - 6c ) - (2a + 5b - 4c) = 2a + 2b - 2c \\ Now, \:  \: AB+BC= \:(- a - b + c ) + (3a + 3b - 3c) \\  = 2 a+ 2b - 2 c= AC \\ we \:  \: see \:  \: that, \: AB+BC=AC \\ Hence \:  \:  the \:  \:  given \:  \:  points  \:  \: are \:  \:  collinear.

Similar questions