show that the positive odd integer is of the form 4q+1 4q+3
Answers
Answer:
here is your answer;
Step-by-step explanation:
Let be any positive integer
We know by Euclid's algorithm, if a and b are two positive integers, there exist unique integers q and r satisfying, where.
Take
Since 0 ≤ r < 4, the possible remainders are 0, 1, 2 and 3.
That is, can be , where q is the quotient.
Since is odd, cannot be 4q or 4q + 2 as they are both divisible by 2.
Therefore, any odd integer is of the form 4q + 1 or 4q + 3.
Step-by-step explanation:
Let a be the positive integer.
And, b = 4 .
Then by Euclid's division lemma,
We can write a = 4q + r ,for some integer q and 0 ≤ r < 4 .
°•° Then, possible values of r is 0, 1, 2, 3 .
Taking r = 0 .
a = 4q .
Taking r = 1 .
a = 4q + 1 .
Taking r = 2
a = 4q + 2 .
Taking r = 3 .
a = 4q + 3 .
But a is an odd positive integer, so a can't be 4q , or 4q + 2 [ As these are even ] .
•°• a can be of the form 4q + 1 or 4q + 3 for some integer q .
Hence , it is solved .