Math, asked by soumitra862, 1 year ago

show that the product of three consecutive natural number is divisible by 6​


Anonymous: ___k off

Answers

Answered by shadowsabers03
5

The concept given below always holds true that,

\displaystyle 2 \mid n(n+1)

We have to prove that,

6 \mid n(n+1)(n+2)

where  n \in \mathbb{N}

Let n = 1.

\begin{aligned}&n(n+1)(n+2)\\ \\ \Longrightarrow\ \ &1 \times 2 \times 3\\ \\ \Longrightarrow\ \ &6\end{aligned}\\ \\ \\ \\ \underline{\underline{6 \mid 6}}

Let n = 2.

\begin{aligned}&n(n+1)(n+2)\\ \\ \Longrightarrow\ \ &2 \times 3 \times 4\\ \\ \Longrightarrow\ \ &24\end{aligned}\\ \\ \\ \\ \underline{\underline{6 \mid 24}}

Let n = 3.

\begin{aligned}&n(n+1)(n+2)\\ \\ \Longrightarrow\ \ &3 \times 4 \times 5\\ \\ \Longrightarrow\ \ &60\end{aligned}\\ \\ \\ \\ \underline{\underline{6 \mid 60}}

Let n = k.

Assume that  6 \mid k(k+1)(k+2).

Taking k(k+1)(k+2)=6m for any integer m.

Let n = k + 1.

\begin{aligned}&n(n+1)(n+2)\\ \\ \Longrightarrow\ \ &(k+1)(k+2)(k+3)\\ \\ \Longrightarrow\ \ &(k+1)(k+2)k+(k+1)(k+2)3\\ \\ \Longrightarrow\ \ &k(k+1)(k+2)+3(k+1)(k+2)\\ \\ \Longrightarrow\ \ &6m+3(2q)\ \ \ \ \ \ \ \ \ \ [\ \because\ 2 \mid n(n+1)\ ]\\ \\ \Longrightarrow\ \ &6m+6q\\ \\ \Longrightarrow\ \ &6(m+q)\end{aligned}

Hence Proved!

Similar questions