Math, asked by Anonymous, 3 months ago

Show that the progression 81 , 27 , 9 , 3 , 1 ... is a G.P. Write its (i) first term (ii) common ratio (iii) nth term (iv) 11th term.
[BE BRAINLY ^_^]
{MODS/STARS/BEST USERS}

Answers

Answered by CopyThat
66

Answer :-

The given progression is 81, 27, 9, 3, 1, ...

We have, 27/81 = 9/27 = 3/9 = 1/3 [Constant]

So, the given progression is a G.P.

We have,

(i) First term, a = 81.

(ii) common ratio, r = 27/81 = 1/3.

(iii) nth term, Tₙ = arⁿ⁻¹

=> Tₙ = 81 × (1/3)ⁿ⁻¹ = 81/3ⁿ⁻¹ - (X)

(iv) Putting n = 11 in (X), we get:

=> T₁₁ = 81/(3¹¹ - 1) = 81/3¹⁰ = 3⁴/¹⁰ = 1/3⁶ = 1/729.

Answered by amansharma264
40

EXPLANATION.

Geometric progression.

⇒ 81, 27, 9, 3, 1 . . . . .

As we know that,

First term = a = 81.

Common ratio = b/a = 27/81 = 1/3.

As we know that,

General term of G.P.

⇒ Tₙ = a x rⁿ⁻¹.

Put the value in the equation, we get.

⇒ Tₙ = 81 x (1/3)ⁿ⁻¹.

11th term of G.P.

⇒ T₁₁ = ar¹⁰.

Put the values in the equation, we get.

⇒ T₁₁ = 81 x (1/3)¹⁰.

⇒ T₁₁ = 81 x (1/3) x (1/3) x (1/3) x (1/3) x (1/3)⁶.

⇒ T₁₁ = [1/(3)]⁶.

⇒ T₁₁ = 1/729.

                                                                                                                       

MORE INFORMATION.

Geometric mean.

⇒ a, G, b are in G.P.

⇒ G² = ab.

⇒ G = ± √ab.

⇒ G = + √ab. [For positive numbers].

⇒ G = - √ab. [For negative numbers].

Nth Geometric mean.

⇒ a, G₁, G₂, G₃, . . . . . Gₙ , b. are in G.P.

⇒ T₁ = a.

⇒ Tₙ₊₂ = b.

⇒ Tₙ₊₂ = a. r ⁽ⁿ⁺²⁻¹⁾.

⇒ b = a x rⁿ⁺¹.

⇒ r⁽ⁿ⁺¹⁾ = b/a.

⇒ r = (b/a)^(1/n + 1)

Similar questions