Show that the radius of curvature at the point (a cos^3theta,a sin^3theta) on the curve x^2/3+y^2/3=a^2/3 is 3a sin theta cos theta
Answers
The given parametric equations are
x = a cosθ ...(i)
y = a sinθ ...(ii)
Taking derivatives, we get
x' = - a sinθ (θ') ...(iii)
y' = a cosθ (θ') ...(iv)
Again, taking derivatives, we get
x" = - a cosθ (θ')² - a sinθ (θ") ...(v)
y" = - a sinθ (θ')² + a cosθ (θ") ...(vi)
Now, the radius of curvature (ρ)
= {(x'² + y'²)^(3/2)}/(x' y" - y' x")
= [{(a²sin²θ + a²cos²θ)(θ')²}^(3/2)]/{a²sin²θ (θ')³ - a² sinθ cosθ (θ') (θ") + a²cos²θ (θ')³ + a² sinθ cosθ (θ') (θ")}
= {(a² θ'²)^(3/2)}/(a²θ'³)
= (a³ θ'³)/(a² θ'³)
= a
Answer:
The given parametric equations are
x = a cosθ ...(i)
y = a sinθ ...(ii)
Taking derivatives, we get
x' = - a sinθ (θ') ...(iii)
y' = a cosθ (θ') ...(iv)
Again, taking derivatives, we get
x" = - a cosθ (θ')² - a sinθ (θ") ...(v)
y" = - a sinθ (θ')² + a cosθ (θ") ...(vi)
Now, the radius of curvature (ρ)
= {(x'² + y'²)^(3/2)}/(x' y" - y' x")
= [{(a²sin²θ + a²cos²θ)(θ')²}^(3/2)]/{a²sin²θ (θ')³ - a² sinθ cosθ (θ') (θ") + a²cos²θ (θ')³ + a² sinθ cosθ (θ') (θ")}
= {(a² θ'²)^(3/2)}/(a²θ'³)
= (a³ θ'³)/(a² θ'³)
= a