show that the ratio of areas of two similar triangles is equal to the ratio of the squares of their corresponding sides.
Answers
Answered by
4
Answer:
Given: Δ ABC ~ Δ PQR
To Prove: ar(ΔABC) / ar(ΔPQR) = (AB/PQ)2 = (BC/QR)2 = (CA/RP)2
Construction: Draw AM ⊥ BC, PN ⊥ QR
ar(ΔABC) / ar(ΔPQR) = (½ × BC × AM) / (½ × QR × PN)
= BC/QR × AM/PN ... [i]
In Δ ABM and Δ PQN,
∠B = ∠Q (Δ ABC ~ Δ PQR)
∠M = ∠N (each 90°)
So, Δ ABM ~ Δ PQN (AA similarity criterion)
Therefore, AM/PN = AB/PQ ... [ii]
But, AB/PQ = BC/QR = CA/RP (Δ ABC ~ Δ PQR) ... [iii]
Hence, from eqn.(i) :
ar(ΔABC) / ar(ΔPQR) = BC/QR × AM/PN
= AB/PQ × AB/PQ [From eqn.(ii) and (iii)] :
= (AB/PQ)2
Using eqn.(iii) :
ar(ΔABC) / ar(ΔPQR) = (AB/PQ)2 = (BC/QR)2 = (CA/RP)2
i hope it will helps you friend
Attachments:
mahi015:
thanku so much
Answered by
1
Answer
Given: Δ ABC ~ Δ PQR
To Prove: ar(ΔABC) / ar(ΔPQR) = (AB/PQ)2 = (BC/QR)2 = (CA/RP)2
Construction: Draw AM ⊥ BC, PN ⊥ QR
ar(ΔABC) / ar(ΔPQR) = (½ × BC × AM) / (½ × QR × PN)
= BC/QR × AM/PN ... [i]
In Δ ABM and Δ PQN,
∠B = ∠Q (Δ ABC ~ Δ PQR)
∠M = ∠N (each 90°)
So, Δ ABM ~ Δ PQN (AA similarity criterion)
Therefore, AM/PN = AB/PQ ... [ii]
But, AB/PQ = BC/QR = CA/RP (Δ ABC ~ Δ PQR) ... [iii]
Hence, from eqn.(i)
:
ar(ΔABC) / ar(ΔPQR) = BC/QR × AM/PN
= AB/PQ × AB/PQ [From eqn.(ii) and (iii)]
:
= (AB/PQ)2
Using eqn.(iii)
:
ar(ΔABC) / ar(ΔPQR) = (AB/PQ)2 = (BC/QR)2 = (CA/RP)2
Given: Δ ABC ~ Δ PQR
To Prove: ar(ΔABC) / ar(ΔPQR) = (AB/PQ)2 = (BC/QR)2 = (CA/RP)2
Construction: Draw AM ⊥ BC, PN ⊥ QR
ar(ΔABC) / ar(ΔPQR) = (½ × BC × AM) / (½ × QR × PN)
= BC/QR × AM/PN ... [i]
In Δ ABM and Δ PQN,
∠B = ∠Q (Δ ABC ~ Δ PQR)
∠M = ∠N (each 90°)
So, Δ ABM ~ Δ PQN (AA similarity criterion)
Therefore, AM/PN = AB/PQ ... [ii]
But, AB/PQ = BC/QR = CA/RP (Δ ABC ~ Δ PQR) ... [iii]
Hence, from eqn.(i)
:
ar(ΔABC) / ar(ΔPQR) = BC/QR × AM/PN
= AB/PQ × AB/PQ [From eqn.(ii) and (iii)]
:
= (AB/PQ)2
Using eqn.(iii)
:
ar(ΔABC) / ar(ΔPQR) = (AB/PQ)2 = (BC/QR)2 = (CA/RP)2
Similar questions