Math, asked by Nawal255, 3 months ago

Show that the relation "less than or equal to" on the set of integers Z, is reflexive and transitive
but not symmetric

Answers

Answered by mathdude500
5

Basic Concept :-

Reflexive :-

  • Relation is reflexive. If (a, a) ∈ R for every a ∈ A.

Symmetric :-

  • Relation is symmetric, If (a, b) ∈ R, then (b, a) ∈ R.

Transitive :-

  • Relation is transitive, If (a, b) ∈ R & (b, c) ∈ R, then (a, c) ∈ R. If relation is reflexive, symmetric and transitive

Let's solve the problem now!!

Here,

Relation, R mathematically represented as

\rm :\longmapsto\:R \:  =  \{(a, b) : a \leqslant b \: where \: a, b \:  \in \: Z \}

Reflexive :-

\rm :\longmapsto\:Let \: a \:  \in \: Z

\rm :\longmapsto\:We\:know,\: a = a

\rm :\longmapsto\:(a, a) \in \: R

\bf\implies \:R \: is \: reflexive

Symmetric :-

\rm :\longmapsto\:Let \: a, b \in \: Z \: such \: that \: (a, b) \in \: R

\rm :\implies\:a \leqslant b

\rm : \cancel {\implies} \:  \: b \leqslant a

\rm :\implies\:(b, a) \:   \cancel\in \: R

\bf\implies \:R \: is \: not \: symmetric

Transitive :-

\rm :\longmapsto\:Let \: a, b, c \in \: Z \: such \: that(a, b) \in \: R \: and \: (b, c) \in \: R

\rm :\longmapsto\:as \: (a, b) \in \: R\rm :\implies\:a \leqslant b -  - (1)

\rm :\longmapsto\:as \: (b, c) \in \: R \rm  \: \implies\:b \leqslant c -  - (2)

From equation (1) and equation (2), we concluded that

\rm :\longmapsto\:a \leqslant c

\rm :\implies\:(a, c) \in \: R

\bf\implies \:R \: is \: trasitive.

Similar questions