show that the relation R in the set of all integers Z divided by R ={(a, b) /2 devides a–b } is an equivalent relation
Answers
Answered by
4
Answer:
2{(a,b)=2dividesa=b}
where R is in set 2 of integers
a-a=0
2 divides a-a
⇒(a,a)ϵR ∴R is reflexive
Let (a,a)ϵR
∴2 divides a−b⇒a−b=2n
for same nϵz⇒b−a=2(−n)
⇒ 2 divides b−a=(b,a)ϵR
R is symmetric
Let (a,b) & (b,c)ϵR
2 divides a-b & b-c
∴a−b=2n & b−c=2n
2
for same n
1
,n
2
ϵ2
=2n
1
+2n
2
=a−c=2(n
1
+n
2
)
∴2 divides a-c
(a,c)ϵR
∴(a,b)(b,c)ϵR⇒(a,c)ϵR
∴R is transitive
So, R is an equivalence relation
Similar questions