Math, asked by kavan5, 11 months ago

show that the relation R in the set of
-Integers given by R={(a, b)} : 5 divides
(a-b)} is symetric & transitive.​

Answers

Answered by shadowsabers03
0

The relation \displaystyle\sf{R:\mathbb{Z}\longrightarrow\mathbb{Z}} is defined as,

\displaystyle\longrightarrow\sf{R=\{(a,\ b):5\mid(a-b),\ a,\ b\in\mathbb{Z}\}}

Let there exist two integers \displaystyle\sf{a} and \displaystyle\sf{b} such that,

\displaystyle\longrightarrow\sf{a-b=5m\quad\implies\quad5\mid(a-b)}

Then we see that,

\displaystyle\longrightarrow\sf{b-a=-5m\quad\implies\quad5\mid(b-a)}

Hence \displaystyle\sf{R} is symmetric as it contains both \displaystyle\sf{(a,\ b)\quad\&\quad(b,\ a).}

Let there exist an integer \displaystyle\sf{c} such that,

\displaystyle\longrightarrow\sf{b-c=5n\quad\implies\quad5\mid(b-c)}

Then,

\displaystyle\longrightarrow\sf{a-c=a-b+b-c}

\displaystyle\longrightarrow\sf{a-c=5m+5n}

\displaystyle\longrightarrow\sf{a-c=5(m+n)}

\displaystyle\Longrightarrow\sf{5\mid(a-c)}

Hence \displaystyle\sf{R} is transitive as it contains \displaystyle\sf{(a,\ b),\quad(b,\ c)\quad\&\quad(a,\ c).}

Also, \displaystyle\sf{R} is reflexive because,

\displaystyle\longrightarrow\sf{a-a=0\quad\implies\quad5\mid(a-a)}

so that it contains \displaystyle\sf{(a,\ a).}

Hence \displaystyle\sf{R} is an equivalence relation.

Similar questions