Math, asked by 2004niranjan, 11 months ago

show that the root of the equation x²+2(a+b)x+2(a²+b²)=0 are not real

Answers

Answered by Anonymous
2

Given :

x²+2(a+b)+2(a²+b²) =0 is a quadratic equation.

To prove :

The roots of x²+2(a+b)x+2(a²+b²)=0 are not real.

Proof :

A quadratic equation has the highest degree as 2. And is expressed in the form ax²-bx +c.

Some of the discriminant of roots are :

b²- 4ac = 0 [Rational & equal roots]

b²- 4ac > 0 [ Real but unequal roots]

b²- 4ac < 0 [ non - real roots]

So, for non-real roots

Here,

a = 1

b = 2(a+b)

c = 2(a²+b²)

Now,

b ² - 4ac < 0

[2(a+b)]² - 4[1 × 2(a²+b²)] < 0

4(a²+2ab+b²) - 8(a²+b²) < 0

4a² + 8ab +4b² - 8a² - 8b² < 0

-4a²- 4b² +8ab < 0

-a ² - b ² +2ab < 0

a ² + b ² - 2ab < 0

(a-b) ²< 0

Therefore, from this we can conclude that if (a-b) ² is less than 0, then the roots of quadratic equation x²+2(a+b)x+2(a²+b²)=0 are not real.

Answered by Anonymous
2

\huge\red{\underline{\underline{\pink{Ans}\red{wer:-}}}}

\sf\orange{Given:}

\sf{The \ given \ quadratic \ equation \ is}

\sf{\implies{x^{2}+2(a+b)x+2(a^{2}+b^{2})=0}}

\sf\pink{To \ show:}

\sf{Roots \ are \ not \ real.}

\sf\green{\underline{\underline{Solution:}}}

\sf{The \ given \ quadratic \ equation \ is}

\sf{\implies{x^{2}+2(a+b)x+2(a^{2}+b^{2})=0}}

\sf{Here,}

\sf{a=1}

\sf{b=2(a+b)}

\sf{c=2(a^{2}+b^{2})}

\sf{Discriminant=b^{2}-4ac}

\sf{\Delta=[2(a+b)]^{2}-4(1)[2(a^{2}+b^{2})]}

\sf{\Delta=4a^{2}+4ab+b^{2}-4(2a^{2}+2b^{2})}

\sf{\Delta=4a^{2}+4ab+b^{2}-8a^{2}-8b^{2}}

\sf{\Delta=-4a^{2}+4ab-4b^{2}}

\sf{\Delta=-4(a^{2}-ab+b^{2})}

\sf{\Delta=-4(a-b)^{2}}

\sf{But, \ it's \ in \ negative}

\sf{\therefore{\Delta&lt;0}}

\sf\purple{\tt{\therefore{Roots \ are \ not \ real.}}}

Similar questions