Math, asked by sandhyachourasia150, 1 month ago

show that the roots of the quadratic equationsare equal then ad = bc. X2(A2 + b2) +2(ac + bd)x +( c2+ D2)​

Answers

Answered by ripinpeace
5

Step-by-step explanation:

\bf  \large \green{given}

 \bf  \large \{{x}^{2}( {a}^{2}   +  {b}^{2} ) +2(ac + bd)x +(  {c}^{2} +  {d}^{2} )

 \bf \large \red{to \: prove}

 \bf \: ad = bc

 \bf \large \orange{solution}

equation has real roots .

Therefore, discriminant =0

   \large\bf \: d \:  =  {b}^{2}  + 4ac

Thus, [2(ac + bd)]² + 4( + b²) × (c² + )

4(c² + d² +2ac.bd)= 4(c² + d² + c² + d²)

(ad - bc)² = 0

⇒ad−bc=0

⇒ad=bc

Answered by rajeebsc001
0

Answer:

Quadratic equations are in the form of,

x²-(α+β)x+αβ = 0

f(x) = (a²+b²)x² + 2(ac+bd)x+(c²+d²) = 0

α+β = -2(ac+bd)/(a²+b²)

αβ = (c²+d²)/(a²+b²)

Roots of the quadratic equations are equal, α = β (given)

α+β = -2(ac+bd) / (a²+b²)

2α = -2(ac+bd) / (a²+b²)

α = (-ac-bd) / (a²+b²)

αβ = (c²+d²) / (a²+b²)

α.α = (c²+d²) / (a²+b²)

α² = (c²+d²) / (a²+b²)

(-ac-bd)²/(a²+b²) = (c²+d²) / (a²+b²)

(ac+bd)²/(a²+b²)² = (c²+d²) / (a²+b²)

(ac+bd)²/(a²+b²) = (c²+d²)

(ac+bd)² = (a²+b²)(c²+d²)

(ac)²+(bd)²+2abcd = (a²+b²)(c²+d²)

(ac)²+(bd)²+2abcd = (ac)²+(ad)²+(bc)²+(bd)²

2abcd = (ad)²+(bc)²

(ad)²+(bc)²-2abcd = 0

(ac-bd)² = 0

ac-bd = 0

ac = bd

Hence it proved .

Similar questions