show that the roots of the quadratic equationsare equal then ad = bc. X2(A2 + b2) +2(ac + bd)x +( c2+ D2)
Answers
Answered by
5
Step-by-step explanation:
equation has real roots .
Therefore, discriminant =0
Thus, [2(ac + bd)]² + 4(a² + b²) × (c² + d²)
⇒ 4(a²c² + b²d² +2ac.bd)= 4(a²c² + a²d² + b²c² + b²d²)
⇒ (ad - bc)² = 0
⇒ad−bc=0
⇒ad=bc
Answered by
0
Answer:
Quadratic equations are in the form of,
x²-(α+β)x+αβ = 0
f(x) = (a²+b²)x² + 2(ac+bd)x+(c²+d²) = 0
α+β = -2(ac+bd)/(a²+b²)
αβ = (c²+d²)/(a²+b²)
Roots of the quadratic equations are equal, α = β (given)
α+β = -2(ac+bd) / (a²+b²)
2α = -2(ac+bd) / (a²+b²)
α = (-ac-bd) / (a²+b²)
αβ = (c²+d²) / (a²+b²)
α.α = (c²+d²) / (a²+b²)
α² = (c²+d²) / (a²+b²)
(-ac-bd)²/(a²+b²) = (c²+d²) / (a²+b²)
(ac+bd)²/(a²+b²)² = (c²+d²) / (a²+b²)
(ac+bd)²/(a²+b²) = (c²+d²)
(ac+bd)² = (a²+b²)(c²+d²)
(ac)²+(bd)²+2abcd = (a²+b²)(c²+d²)
(ac)²+(bd)²+2abcd = (ac)²+(ad)²+(bc)²+(bd)²
2abcd = (ad)²+(bc)²
(ad)²+(bc)²-2abcd = 0
(ac-bd)² = 0
ac-bd = 0
ac = bd
Hence it proved .
Similar questions