Show that the semi-vertical angle of the cone of the maximum volume and of given slant height is tan^-1(2)^1/2.
Answers
Answered by
5
HELLO DEAR
Let α be the semi vertical angle of a cone of slant height l
Then VO = l cos α and OA = l sin α
Let V be the volume of the cone Then
V =1/3π(OA)²(VO)
V = 1/3π(l²sin²α )(lcosα)
V = 1/3πl³(sin²αcosα)
dV/da = 1/3πl²(-sin³α + 2cos²αsinα)
dV/da = πl²/3sinα(-sin²α + 2cos²α)
now, dV/da = 0,
πl²/3sinα(-sin²α + 2cos²α) = 0
2cos²α = sin²α
tan²α = 2
The V is maximum when tan α =√2 or α = tan^{–1}√2
i.e. when the semi vertical angle of the cone is tan^{–1}√2
I HOPE ITS HELP YOU DEAR,
THANKS
Let α be the semi vertical angle of a cone of slant height l
Then VO = l cos α and OA = l sin α
Let V be the volume of the cone Then
V =1/3π(OA)²(VO)
V = 1/3π(l²sin²α )(lcosα)
V = 1/3πl³(sin²αcosα)
dV/da = 1/3πl²(-sin³α + 2cos²αsinα)
dV/da = πl²/3sinα(-sin²α + 2cos²α)
now, dV/da = 0,
πl²/3sinα(-sin²α + 2cos²α) = 0
2cos²α = sin²α
tan²α = 2
The V is maximum when tan α =√2 or α = tan^{–1}√2
i.e. when the semi vertical angle of the cone is tan^{–1}√2
I HOPE ITS HELP YOU DEAR,
THANKS
Similar questions