Math, asked by devansh699, 9 months ago

Show that the set Q+ of all positive rational numbers forms an abelian group under the operation * defined by
a*b= 1/2(a.b); for all a,b ¢ Q+​

Answers

Answered by pulakmath007
54

\displaystyle\huge\red{\underline{\underline{Solution}}}

TO PROVE

The set Q+ of all positive rational numbers forms an abelian group under the operation * defined by

 \displaystyle \: \sf{ a*b  =  \frac{1}{2}ab \:  \:  \:  \forall \:  \:  a, b  \in \mathbb{Q}^{ + } }

PROOF

1. CHECKING FOR CLOSURE PROPERTY

 \displaystyle \: \sf{ Let \: \:  a, b  \in \mathbb{Q}^{ + } }

 \implies \:  \displaystyle \: \sf{  \frac{1}{2}   ab   \: \in \mathbb{Q}^{ + } }

 \implies \:  \displaystyle \: \sf{  a* b   \: \in \mathbb{Q}^{ + } }

 \sf{So \:  \: \mathbb{Q}^{ + }   \:  is \:  closed \:  under \:  the  \: operation \:  *  \:  \: }

2. CHECKING FOR ASSOCIATIVE PROPERTY

 \displaystyle \: \sf{ Let \: \:  a, b ,c \:  \in \mathbb{Q}^{ + } }

Then

  \displaystyle \: \sf{ a*(b*c) = a* \big(  \frac{1}{2}  bc\big) \: } =  \frac{1}{4} abc

  \displaystyle \: \sf{ (a*b)*c =  \big(  \frac{1}{2}  ab\big) *c\: } =  \frac{1}{4} abc

So

\: \sf{ a*(b*c ) =\: \sf{ (a*b)*c \: }}

 \sf{So \:  \: \mathbb{Q}^{ + }   \:  is \:  associative \:  under \:  the  \: operation \:  *  \:  \: }

3. EXISTENCE OF IDENTITY ELEMENT

 \displaystyle \: \sf{ Let \: \:  a  \in \mathbb{Q}^{ + } }

 \displaystyle \: \sf{ Let \: \:  e  \in \mathbb{Q}^{ + } } \: be \: the \: identity \: element \:

 \sf{ \: Then \:  \:  e*a= a*e= a \: }

 \sf{ \:Now  \:  \:   e*a= a \: } \:  \: implies

 \:  \displaystyle \: \sf{  \frac{1}{2}   ea \: = a   \:}

 \implies \:  \displaystyle \: \sf{  e = 2 }

 \sf{So  \: 2 \:  \:  is  \: the  \: identity \:  element \:  under \:  the  \: operation \:  *  \:}

4. EXISTENCE OF INVERSE ELEMENT

 \displaystyle \: \sf{ Let \: \:  a  \in \mathbb{Q}^{ + } }

 \displaystyle \: \sf{ Let \: \:  b \in \mathbb{Q}^{ + } } \: be \: the \: inverse \:  \: element  \: of \: a\:

 \sf{ \: Then \:  \:  a*b= b*a= e\: }

 \sf{ \:Now  \:  \:   a*b= e\: } \:  \: implies

 \:  \displaystyle \: \sf{  \frac{1}{2}   ab\: = 2  \:}

 \implies \:  \:  \displaystyle \: \sf{  b\: =  \frac{4}{a}   \:}

 \displaystyle \: \sf{  \: \:  a  \in \mathbb{Q}^{ + }  \:  \: implies \:  \:  \:  \frac{4}{a}   \in \mathbb{Q}^{ + } \: }

 \displaystyle \: \sf{  \therefore \: \:   \frac{4}{a}  \:  }\: is \: the \: inverse \:  \: element  \: of \: a\:  \: under \:  the  \: operation \:  *

 \sf{So \:  \: \mathbb{Q}^{ + }   \:  is \:  a \: group \:  under \:  the  \: operation \:  *  \:  \: }

CHECKING FOR COMMUTATIVE PROPERTY

 \displaystyle \: \sf{ Let \: \:  a, b  \in \mathbb{Q}^{ + } }

 \displaystyle \: \sf{ a*b  =  \frac{1}{2}ab \:  \:  \:   }

 \displaystyle \: \sf{ b*a  =   \frac{1}{2}ba =  \frac{1}{2}ab \:  \:  \:   }

 \sf{ \therefore \:  \:  \:  a*b= b*a}

 \sf{So \:  \: \mathbb{Q}^{ + }   \:  is \:  commutative \:  \:  under \:  the  \: operation \:  *  \:  \: }

 \sf{So \:  \: \mathbb{Q}^{ + }   \:  is \:  a  \: commutative \: \: group \:  under \:  the  \: operation \:  *  \:  \: }

Similar questions