show that the square of an odd positive integer can be in the form 6q+1 or 6q+3 for some integer q.
Answers
Answered by
6
Answer:
let a be any positive integer
then
b=5
0≤r<b
0≤r<6
r=0,1,2, 3,4, 5
case 1.
r=0
a=bq+r
6q+0
(6q)^2
36q^2
6(6q^2)
let 6q^2 be m
=6m
case 2.
r=1
a=bq+r
(6q+1)^2
(6q^2)+2*6q*1+1^2
36q^2+12q+1
6(6q^2+2q)+1
let 6q^2+2q be m
= 6m+1
case 3.
r=2
(6q+2)^2
36q^2+24q+4
6(6q^2+4q)+4
let 6q^2+4q be m
= 6m+4
case4.
r=3
(6q+3)^2
36q^2+36q+9
36q^2+36q+6+3
6(6q^2+6q+1)+3
let the 6q^2+6q+1 be m
= 6m+3
case 5.
r=4
(6q+4)^2
36q^2+48q+16
36q^2+48q+12+4
6(6q^2+8q+2)+4
let 6q^2+8q+4 be m
6m+4
case 6
r=5
(6q+5)^2
36q^2+60q+24+1
6(6q^2+10q+4)+1
let 6q^2+10q+4 bem
= 6m+1
note= i have taken m instead of q
from above it is proved.
hope it helps
Step-by-step explanation:
Similar questions