Math, asked by MuskanChallana, 1 year ago

show that the square of any odd integer integer is of the form 4q+1 for some integer q

Answers

Answered by snehitha2
46
Let a be any odd integer.

Euclid division lemma :-

a = bq + r

a = 4q + r [b=4]

0 ≤ r < b

The possible values of r are 0,1,2 and 3.

a = { 1,3,5,7........}

Square of any odd integer :-

1² = 1 = 4(0)+1

3² = 9 = 4(2)+1

5² = 25 = 4(6)+1

7² = 49 = 4(12)+1

Therefore, the square of any odd integer is of the form 4q+1
Answered by Anonymous
33

Step-by-step explanation:


Note :- I am taking q as some integer.



Let positive integer a be the any positive integer.

Then, b = 4 .


By division algorithm we know here

0 ≤ r < 4 , So r = 0, 1, 2, 3.


When r = 0


a = 4m


Squaring both side , we get


a² = ( 4m )²


a² = 4 ( 4m​²)


a² = 4q , where q = 4m²


When r = 1


a = 4m + 1


squaring both side , we get


a² = ( 4m + 1)²


a² = 16m² + 1 + 8m


a² = 4 ( 4m² + 2m ) + 1


a² = 4q + 1 , where q = 4m² + 2m


When r = 2


a = 4m + 2


Squaring both hand side , we get


a² = ​( 4m + 2 )²


a² = 16m² + 4 + 16m


a² = 4 ( 4m² + 4m + 1 )


a² = 4q , Where q = ​ 4m² + 4m + 1


When r = 3


a = 4m + 3


Squaring both hand side , we get


a² = ​( 4m + 3)²


a² = 16m² + 9 + 24m


a² = 16m² + 24m ​ + 8 + 1


a² = 4 ( 4m² + 6m + 2) + 1


a² = 4q + 1 , where q = 4m² + 6m + 2



Hence ,Square of any positive integer is in form of 4q or 4q + 1 , where q is any integer.



THANKS



#BeBrainly.



Similar questions