Show that the square of any odd positive integer is in the form of 8m+1
Answers
Answered by
12
According to Euclid division lemma , a = bq + r where 0 ≤ r < b
Here b = 8 possible remainder = 1, 2, 3,4,5,6 and 7
Then, a = 8q + r
Case 1
when r = 1 , a = 8q + 1
squaring on both sides,
a² = (8q + 1)² = 64²q² + 16q + 1 = 8(8q² + 2q) + 1
= 8m + 1 , where m = 8q² + 2q
case 2
when r = 2 , a = 8q + 2
squaring on both sides,
a² = (8q + 2)² = 64q² + 32q + 4 ≠ 8m +1
Case 3
when r = 3 , a = 8q + 3
squaring on both sides,
a²= (8q + 3)²= 64q²+48q + 9 =64q²+48q +8+1=8(8q² + 6q + 1) + 1
= 8m + 1 , where m = 8q² + 6q + 1
You can see that at every odd values of r square of a is in the form of 8m +1
But at every even Values of r square of a isn't in the form of 8m +1 .
Also we know, a = 8q +1 , 8q +3 , 8q + 5 , 8q +7 are not divisible by 2 means these all numbers are odd numbers
Hence , it is clear that square of an odd positive is in form of 8m +1
Here b = 8 possible remainder = 1, 2, 3,4,5,6 and 7
Then, a = 8q + r
Case 1
when r = 1 , a = 8q + 1
squaring on both sides,
a² = (8q + 1)² = 64²q² + 16q + 1 = 8(8q² + 2q) + 1
= 8m + 1 , where m = 8q² + 2q
case 2
when r = 2 , a = 8q + 2
squaring on both sides,
a² = (8q + 2)² = 64q² + 32q + 4 ≠ 8m +1
Case 3
when r = 3 , a = 8q + 3
squaring on both sides,
a²= (8q + 3)²= 64q²+48q + 9 =64q²+48q +8+1=8(8q² + 6q + 1) + 1
= 8m + 1 , where m = 8q² + 6q + 1
You can see that at every odd values of r square of a is in the form of 8m +1
But at every even Values of r square of a isn't in the form of 8m +1 .
Also we know, a = 8q +1 , 8q +3 , 8q + 5 , 8q +7 are not divisible by 2 means these all numbers are odd numbers
Hence , it is clear that square of an odd positive is in form of 8m +1
ishwarsinghdhaliwal:
Mark as brainliest plz
Answered by
4
let a be any positive integer
then
b=8
0≤r<b
0≤r<8
r=0,1,2, 3,4,5,6,7
case 1.
r=0
a=bq+r
8q+0
(8q)^2
=> 64q^2
8(8q^2)
= let 2q^2 be m
8m
case 2.
r=1
a=bq+r
(8q+1)^2
(8q)^2+2*8q*1+(1)^2
64q^2+16q+1
8(8q^2+2q)+1.
let 8q^2+2q be. m
8m+1
case 3.
r=2
(8q+2)^2
(8q)^2+2*8q*2+(2)^2
64q^2+32q+4
8(8q^2+4q)+4
let 8q^2+4q be m
8m+4
case4.
r=3
(8q+3)^2
(8q)^2+2*8q*3+(3)^2
64q^2+48q+9
64q^2+48q+8+1
8(8q^2+6q+1)+1
let 8q^2+6q+1 be m
8m+1
case 5.
r=4
(8q+4)^2
64q^2+64q+16
8(8q^2+8q+2)
let 8q^2+8q+2 be m
8m
case 6
r=5
(8q+5)^2
64q^2+80q+25
64q^2+80q+24+1
8(8q^2+10q+3)+1
let 8q^2+10q+3 be m
8m+1
case 7
r=6
(8q+6)^2
64q^2+96q+36
64q^2+96q+32+4
8(8q^2+12q+4)+4
let 8q^2+12q+4 be m..
8m+4
case8.
r=7
(8q+7)^2
64q^2+112q+49
64q^2+112q+48+1
8(8q^2+14q+6)+1
let 8q^2+14q+6 be m
8m+1
from above it is proved.
Similar questions