Math, asked by rishithareddy0811, 8 months ago

show that the square of any positive integer can't be of the form 5m+2or 5m+3 where 'm' is a whole number ​

Answers

Answered by pulakmath007
18

\displaystyle\huge\red{\underline{\underline{Solution}}}

TO PROVE

The square of any positive integer can't be of the form 5m+2or 5m+3 where m is a whole number

PROOF

In order to prove the given result we need to memorise THE DIVISION ALGORITHM, which states that :

If a & b are integers where b is a positive integer then there exist unique integers q & r such that

 \sf{ \: a = bq + r \:  \:  \:  \:  \: with \: 0 \leqslant r < b \: }

Here b = 5

So

 \sf{ 0 \leqslant r < 5\: }

  \sf{\implies \: r  = 0, 1,2,3,4\: }

 \sf{ \underline{CASE : 1 \:  ( r = 0)}}

 \sf{a = 5q}

 \therefore \:  \sf{ { \:  {a}^{2} =  {(5q )}^{2}   \: }}

 \:  \sf{ { \:  = 25 {q}^{2}   \: }}

\:  \sf{ { \:  = 5 \times 5 {q}^{2}   \: }}

 \:  \sf{ { \:  = 5m   \: }} \:   \: \: where \:  \: m = 5 {q}^{2}

 \sf{ \underline{CASE : 2 \: \:  ( r = 1)}}

 \sf{a = 5q + 1}

 \therefore \:  \sf{ { \:  {a}^{2} =  {(5q + 1)}^{2}   \: }}

 \:  \sf{ { \:  = 25 {q}^{2}  + 10q + 1  \: }}

 \:  \sf{ { \:  = 5(5 {q}^{2}  + 2q) + 1  \: }}

 \:  \sf{ { \:  = 5m + 1  \: }} \:  \: where \:  \: m = 5 {q}^{2}  + 2q

 \sf{ \underline{CASE : 3 \: \:  ( r = 2)}}

 \sf{a = 5q + 2}

 \therefore \:  \sf{ { \:  {a}^{2} =  {(5q + 2)}^{2}   \: }}

 \:  \sf{ { \:  = 25 {q}^{2}  + 20q + 4  \: }}

 \:  \sf{ { \:  = 5m+ 4  \: } \:  \:  \: where \:   \:  \: m = 5 {q}^{2}  + 4q \: }

 \sf{ \underline{CASE : 4 \: \:  ( r = 3)}}

 \sf{a = 5q + 3}

 \therefore \:  \sf{ { \:  {a}^{2} =  {(5q + 3)}^{2}   \: }}

 \:  \sf{ { \:  = 25 {q}^{2}  + 30q + 9 \: }}

 \:  \sf{ { \:  = 5(5 {q}^{2}  + 6q +1)  + 4 \: }}

 \:  \sf{ { \:  = 5m + 4 \: }} \:  \: where \:  \: m = 5 {q}^{2}  + 6q +1

 \sf{ \underline{CASE : 5 \: \:  ( r = 4)}}

 \sf{a = 5q + 4}

 \therefore \:  \sf{ { \:  {a}^{2} =  {(5q + 4)}^{2}   \: }}

 \:  \sf{ { \:  = 25 {q}^{2}  + 40q + 16 \: }}

 \:  \sf{ { \:  = 5 (5{q}^{2}  + 8q + 3) + 1 \: }}

 \:  \sf{ { \:  = 5m+ 1 \: }} \:  \: where \:  \: m = 5{q}^{2}  + 8q + 3

So From above we visualize that the square of any positive integer can't be of the form 5m+2or 5m+3 where m is a whole number

Hence the proof follows

Answered by mathsRSP
1

n order to prove the given result we need to memorise THE DIVISION ALGORITHM, which states that :

If a & b are integers where b is a positive integer then there exist unique integers q & r such that

Similar questions