Math, asked by saksham7165, 3 months ago

Show that the square of any positive integer cannot be of the form 3m+2, where m is a natural number. ​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Let x be any positive integer such that x = 3q + r, where 'r' can assume the values 0, 1 and 2.

So, 3 cases arises.

When x = 3q or 3q + 1 or 3q + 2

Case :- 1

When x = 3q

So,

\rm :\longmapsto\: {x}^{2}  =  {(3q)}^{2}  = 9 {q}^{2}  = 3( {3q}^{2}) = 3m

 \sf \: where \: m \:  =  \:  {3q}^{2}

\rm :\implies\:square \: of \: positive \: integer \: is \: of \: the \: form \: 3m.

Case :- 2

When x = 3q + 1

So,

\rm :\longmapsto\: {x}^{2}  =  {(3q + 1)}^{2}

 \:  \:  \:  \:  =  \:  \:  \rm  \:  {(3q)}^{2}  +  {(1)}^{2}  + 2 \times 3q \times 1

 \:  \:  \:  \:  =  \:  \rm  \:  \:  {9q}^{2}  + 1 + 6q

 \:  \:  \:  \:  =  \:  \rm  \:  \: 3( {3q}^{2}  + 2q) + 1

 \:  \:  \:  \:  =  \:  \rm  \:  \: 3m + 1 \:  \: where \: m =  {3q}^{2} + 2q

\rm :\implies\:square \: of \: positive \: integer \: is \: of \: the \: form \: 3m + 1

Case :- 3

When x = 3q + 2

So,

\rm :\longmapsto\: {x}^{2}  =  {(3q + 2)}^{2}

 \:  \:  \:  \:  =  \:  \rm  \:  \:  {(3q)}^{2}  + {(2)}^{2}  + 2 \times 3q \times 2

 \:  \:  \:  \:  =  \:  \rm  \:  \:  {9q}^{2}  + 4 + 12q

 \:  \:  \:  \:  =  \:  \rm  \:  \:  {9q}^{2}  + 3 + 12q + 1

 \:  \:  \:  \:  =  \:  \rm  \:  \:  3({3q}^{2}  + 1 + 4q ) \: +  \: 1

 \:  \:  \:  \:  =  \:  \rm  \:  \: 3m + 1 \:  \: where \: m \:  =  {3q}^{2} + 1 + 4q

\rm :\implies\:square \: of \: positive \: integer \: is \: of \: the \: form \: 3m + 1

So,

these 3 cases implies,

  • Square of any positive integer is of the form of either 3m or 3m + 1.

So, it implies,

  • square of any positive integer is not of the form 3m + 2.

{\boxed{\boxed{\bf{Hence, Proved}}}}

Additional Information :-

Fundamental Theorem of Arithmetic :-

  • This theorem states that Every composite number can be factorized in the form of their prime factors and this method is unique irrespective of their places.

Euclid Division Lemma :-

  • This Lemma states that if a and b are positive integers such that a > b, then there exist unique integers q and r such that a = bq + r where r can assume the values r = 0, 1, 2, _ _ _, b - 1.

Similar questions