show that the square of any positive integer cant be of the form 5m+2or 5m+3 where m is a whole number
Answers
Answered by
2
Step-by-step explanation:
Let a and b be positive integers
a=bq+r
0≤r<b
According to the question
Let b=5 r=0,1,2,3,4
a=5q+r
Case 1:- r=0
a=5q
a²=(5q)²
a²=25q²
a²=5(5q²)
Let 5q²=m
a²=5m
Case 2:- r=1
a=5q+1
a²=(5q+1)²
a²=25q²+10q+1
a²=5(5q²+2q)+1
Let 5q²+2q be m
a²=5m+1
Case 3:- r=2
a=5q+2
a²=(5q+2)²
a²=25q²+20q+4
a²=5(5q²+4q)+4
Let 5q²+4q be m
a²=5m+4
Case 4:- r=3
a=5q+3
a²=(5q+3)²
a²=25q²+30q+9
a²=25q²+30q+5+4
a²=5(5q²+6q+1)+4
Let 5q²+6q+1 be m
a²=5m+4
Case 5:- r=4
a=5q+4
a²=(5q+4)²
a²=25q²+40q+16
a²=25q²+40q+15+1
a²=5(5q²+8q+3)+1
Let 5q²+8q+3 be m
a²=5m+1
The square of any integer can be in the form 5m+1 and 5m+4
But it can't be in the form 5m+2 and 5m+3
Hence proved
Similar questions