show that the square of any positive integer is of the form pq +1, pq + 4 for some integer q
Answers
Answered by
1
Step-by-step explanation:
Let 'a' be any positive integer.
b=4
by Euclid's division lemma,
a=bq+r
a²=(bq+r)²-------1.
r=0,1,2,3
from 1.
for r=0,
a²=(4q+0)²
a²=16q²
a²=4(4q²)
=4q, where q=4q².
for r=1,
a²=(4q+1)²
a²=16q²+1+8q
a²=4(4q²+2q)+1
a²=4q+1, where q=4q²+2q.
Similar questions